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QUESTIONS
ING (interneuronal network gamma) and

PING (pyramidal-interneuronal network
gamma) are well-established theories of the
mechanistic generation of γ-rhythms (≈ 35-100
Hz). (2) However, the capacity of these mecha-
nisms to dynamically respond to external inputs
and phase-lock with upstream rhythms has not
been studied.

We pose the questions:

• What range of dynamics is possible for
these models under periodic forcing?

• How do the properties of these models
compare to those of other commonly stud-
ied forced oscillators?

• Are these mechanisms well-suited to
rapidly establish reliable phase-locked re-
lationships with upstream γ-rhythms?

We address these questions by mathemati-
cally analyzing simple ING and PING models
and comparing them to phase oscillators and re-
laxation oscillators.

GAMMA-GENERATING MECHANISMS

ING is modeled as a synchronous population
of inhibitory theta-neurons with phase θi and
tonic excitation bi, inhibiting itself with slowly
decaying inhibition si and receiving a periodic
excitatory input εI(Φ) with period TI .

PING is modeled like ING, with the addition
of quickly-decaying excitation se from syn-
chronous population of excitatory cells with
phase θe, which triggers the I-population. The
E-population receives the forcing εI(Φ), and is
inhibited by the I-population.

I-population phase:
τiθ̇ = 1− cos(θi) + (1 + cos(θi))Gi
Gi = bi − giisi + εI(Φ), bi > 0

Inhibition: ṡi = −si/τsi
When θ = π, si resets to

si = c(si − 1) + 1

Forcing phase: Φ̇ = 1

E/I-population phases:
τe/iθ̇e/i = 1−cos(θe/i)+(1+cos(θe/i))Ge/i

Ge = be − giesi + εI(Φ), be > 0
Gi = bi − giisi + geise, bi < 0

Excitation/Inhibition:
ṡe/i = −se/i/τsi

When θe/i = π, se/i resets to 1.

Forcing phase: Φ̇ = 1

ING/PING PROPERTIES
Like the relaxation oscillator (below),

the γ-generating networks maintain a robust
natural period while robustly phase-locking
to forcing due to separation of time scales
(τsi � τ ).

We use the variational equations and return
maps for our models (left) to prove two results
differentiating them from ordinary relaxation:

1. Only one phase offset between the
ING oscillator and pulsatile forcing is sta-
ble. We prove this for square pulses.
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Left: Phase-locking only
occurs where the ISI
function crosses the forc-
ing period downwards,
which in this case can
occur only once.

2. If c is small and/or sufficient time is spent
under inhibition each cycle, the system at-
tracts to an invariant torus on which period-
doubling and 1:1-2:1 bistability are not possible. .

Right: Given the
conditions above, an
invariant torus persists
under strong forcing.
The same applies to
the PING model if τi is
small.

PHASE OSCILLATOR LIMITATIONS

The phase oscillator is the generic form of a 1D periodically-
forced oscillator. By changes of variables, any stable limit cycle
under sufficiently weak forcing (ε < ε∗ for some ε∗ > 0) may
be written in this form, as may the LIF and QIF neuron models.

φ̇ = 1 + g(φ)(b+ εI(Φ))
Φ̇ = 1

Restriction to one dimension imposes a tradeoff between ro-
bustness of natural period T to changes in tonic drive b and
capacity to lock to weak inputs at a wide range of frequencies.
At a given forcing strength ε, the width W ε of the interval of
forcing periods TI which may evoke stable phase locking is
bounded by

A separation of timescales
can circumvent this problem
by making the ε∗ required
for the phase reduction ar-
bitrarily small. Thus, if the
ING oscillator has τsi � τ ,
it both maintains a robust
natural period T and phase-
locks to inputs at a range of
forcing periods unbounded
by forcing current and sen-
sitivity.

Wε <
√
−∂T (0,b,Φ0,TI)

∂b |b=0

√
ε supΦ0∈[0,TI ]

∫ T0,0

0
I(Φ0 + t mod TI)dt

RELAXATION LIMITATIONS
The separate timescales of the Fitzhugh-

Nagumo relaxation oscillator give it a robust pe-
riod while phase-locking robustly to inputs.

Two distinguishing characteristic prop-
erties of the forced phase oscillator are:

Regimes of 1:1 bistabil-
ity under weak forcing.
(Left: A bistable pair of
1:1 forced orbits)

Regimes of 1:1-2:1 bista-
bility and period-doubing
under stronger forcing.
(Right: period-doubling
bifurcation as forcing
strength increases, in red)

Figures and results from (1).

CONCLUSION
The ING and PING mechanisms are ideally

suited for responding to upstream γ-rhythms of
varying amplitude and frequency by rapidly es-
tablishing a reliable phase-locked relationship.
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