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General principles in endocrine network modeling 
 
Numerous studies document that hormone delivery pattern to target organs is 
crucial to the effectiveness of their action. Hormone release could be altered by 
pathophysiology and differences in endocrine output mediate important 
intraspecies distinctions, like for example, some of the sexual dimorphism in 
body growth and gene expression in humans and rodents. Accordingly, the 
mechanisms controlling the dynamics of various hormones had become lately 
the object of extensive biomedical research. Intuitive reconstruction of endocrine 
axes is challenged by their high complexity, due to multiple intervening time-
delayed nonlinear feedback and feedforward inputs from various hormones 
and/or neuroregulators.  Consequently, quantitative methods have been 
developed, to complement qualitative analysis and laboratory experiments and 
reveal the specifics of hormone release control. The emerging mathematical 
models interpret endocrine networks as dynamic systems and attempt to 
simulate and explain their temporal behavior.1-6 1, 2, 3,4, 5, 6 

 This chapter focuses on the mathematical approximation of endocrine 
oscillations in the framework of a modeling process structured in three formal 
phases: 
(a) Data analysis (examining the available data). We start with studying the 

available observations and experimental results, by examining the hormone 
time series and determining the specifics of the observed profiles. This might 
include pulse detection, analysis of the variability and orderliness, verifying 
the baseline secretion and half-life, detecting the frequency of the oscillations. 
We identify those phenomena that should be explained by the modeling 
effort, for example, some specific property of the hormone profiles, combined 
with selected feedback experiments.  

(b) Qualitative analysis (designing the formal network). This stage uses the 
information, collected in phase (a) and outlines an intuitive functional scheme 
of the systems underlying physiology. Qualitative analysis of the available 
data7 identifies the key elements and their interaction and organizes them as 
a set of nodes and conduits in a formal endocrine network. The main 
hypothesis states that this formal network explains the selected in phase (a) 
specifics in the experimental data. 

(c) Quantitative analysis (dynamic modeling). At this phase the endocrine 
network is interpreted as a dynamic system and described with a set of 

                                                 
1 Farhy LS, Straume M, Johnson ML, Kovatchev BP, and Veldhuis JD. Am J Physiol Reg Integr 
Comp Physiol, 281: R38-R51, 2001. 
2 Farhy LS, Straume M, Johnson ML, Kovatchev BP, and Veldhuis JD. Unequal autonegative 
feedback by GH models the sexual dimorphism in GH secretory dynamics. Am J Physiol Reg 
Integr Comp Physiol, 282: R753-R764, 2002. 
3 D.M. Keenan and J. D. Veldhuis, Am. J. Physiol. 281, R1917(2001). 
4 D.M. Keenan and J. D. Veldhuis, Am. J. Physiol. 280, R1755(2001). 
5 L. Chen, J.D. Veldhuis, M.L. Johnson, and M. Straume. In: Methods in Neurosciences. New 
York: Academic Press, 270 (1995). 
6 C. Wagner, S.R. Caplan, and G.S. Tannenbaum, Am. J. Physiol.  275, E1046 (1998). 
7 O. Friesen and G. Block, Am. J. Physiol. 246, R847 (1984). 
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coupled ordinary differential equations (ODE). They give the time derivative of 
each network node and approximate all system positive and negative dose-
responsive control loops. The parameters in the ODEs must have a clear 
physiological meaning and are determined by comparing the model output 
with the available data (phase (a)) as we attempt to address the main 
hypothesis (phase (b). 
The outcome of the modeling effort is a conditional answer to the main 

hypothesis. It formulates necessary physiological assumptions (additional to the 
main hypothesis) that would allow the formal network to explain the observed 
data specifics. This further refines the hypothesis and generates new questions 
to be addressed experimentally. 

The general modeling scheme, anticipates that the qualitative analysis of the 
hormone secretion dynamics outlines the formal endocrine network by 
determining its nodes and conduits. As discussed in7 the main source of 
oscillations in biology are feedback loops with delay. However, not every network 
with feedback generates periodic behavior8. The main goal of this work is to 
illustrate via series of abstract examples different conditions, under which 
oscillations can emerge.  To this end, we perform quantitative analysis on various 
abstract endocrine networks, interpreted as dynamic systems. Thus, we will be 
mainly concerned with phase (c) (above) and its relations to phases (a) and (b).  

We start by describing the approximation of the basic element of an 
endocrine network: the dynamics of the concentration of a single hormone, 
eventually controlled by one or more other regulators (system nodes). Further, 
this is used in the simulation and analysis of different feedback networks. The 
main concepts are illustrated on abstract 2-node/1-feedback reference models. 
System parameters are introduced on the basis of their physiological meaning 
and the effect of their modification is examined. Oscillations due to perturbations 
of systems with damped periodicity are distinguished from oscillations of systems 
with a true periodic solution (limit cycle). Additionally, we simulate basic 
laboratory experimental techniques, discuss some of their limitations, and 
suggest alternatives to reveal more network details. 

It should be noted that the theory behind most of the examples in this chapter 
is not trivial. This is especially valid for those models that include one or more 
direct delays in the core system. We avoid the abstract mathematical details to 
make the presentation accessible to a variety of bio-scientists. The simulated 
networks are abstract and do not correspond to a particular endocrine system. 
However, the constructs and the modeling techniques can be easily adapted to fit 
a particular physiology. 
 
 
Simulating the concentration dynamics of a single hormone 
 
In this section we describe the quantitative approximation of the concentration 
dynamics of a single hormone in the abstract pool, where it is secreted (not 

                                                 
8 R. Thomas, R. D’Ari, and N. Thomas, “Biological feedback”, CRC Press, 1990. 
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synthesized).  As described elsewhere (see for example, 9), we assume that the 
hormone concentration rate of change in a certain pool depends on two 
processes - secretion and ongoing elimination. The quantitative description is 
given by the ordinary differential equation  

(1) )()( tStC
dt
dC

+−= α . 

Here,  is the hormone concentration in the corresponding pool,  is the time, 
 is the rate of secretion and the elimination is supposed to be proportional to 

the concentration. 

)(tC t
)(tS

Deconvolution technique, employed to describe hormone pulsatility9, can 
be used as an alternative approach to introducing Eq. (1). In this context, the 
observed hormone concentration is described by a convolution integral  

(2)  τττ∫ −=
t

dtEStC
0

)()()(

where  is a secretion function, and S E  describes the removal of the hormone 
from the pool. For the purposes of this presentation, E  is required to correspond 
to a model with one half-life. In particular, we assume that the elimination 
function  satisfies the initial value problem )(tE

(3) 
1)0(

)()(

=

−=

E

tE
dt

tdE α
 

with some rate of elimination 0>α . Consequently, it is easy to see that Eqs. (2) 
and (3) imply that the right-hand side of Eq. (1) describes the rate of change of 

. And since the solution of Eq. (3) is the function  the hormone 
concentration (the solution of Eq. (1)) is described as the convolution integral 

)(tC tetE α−=)(

ττ τα∫ −−=
t

t deStC
0

)()()(  

Now, suppose that the secretion rate ASS =  (of a hormone A) do not depend 
explicitly on  and is controlled by some other hormone B. We write 

, where C  is the concentration of B. In the sequel,  is called 
a control function and its choice, albeit arbitrary to some extent, should conform 
to a set of general rules. 

t
))(( tCSS BAA = )(tB AS

 
(a) Minimal and maximal exogenous levels  

Denote by C and by  the minimal and maximal values 
(experimentally established or hypothetical) for the concentration of hormone 
A. Typically (but not always),  is associated with the baseline secretion 
and  corresponds to the maximal attainable concentration of exogenous 
A (on variety of conditions, including responses to external sub-maximal 
stimulation). Accordingly, the control function  must satisfy the inequalities: 

min,A max,AC

min,AC

max,AC

AS
                                                 
9 J.D. Veldhuis and M.L. Johnson, Methods Enzymol. 210, 539 (1992) 
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αα /)max()min(/ max,min, AAAA CSSC ≤≤≤  
(b) Monotonous and nonnegative 

The control function must be nonnegative, since the secretion rate is always 
nonnegative, and monotone (with some rare exceptions briefly mentioned in 
the sequel). It will be monotone increasing if represents a positive control. If 
the control is negative, it will be decreasing.  

 
There are many ways to introduce a control function in an acceptable 
mathematical form. As many authors do, we use nonlinear, sigmoid functions, 
known as up- and down-regulatory Hill functions (see 8 for details) 

(4) 










+

+
=

)(
1]/[

1

)(
1]/[

]/[

)()(

down
TG

orup
TG

TG

GF

n

n

n

downup  

where  is called a threshold and n  is called a Hill coefficient. It should be 
noted that 

0>T
F

1≥
downup F−=1  and 2/()( 1) =T

50
F downup . These functions are exemplified 

in the plots in Fig. 1 (for  and 5=n =T ).  
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Fig. 1. Exemplary profiles of up-regulatory (left panel) and down-regulatory (right panel) Hill 

functions. In both examples 5=n  and 50=T . 
 

They are monotone and map ),0(),0(: ∞→∞F ; the Hill coefficient controls the 
slope (which also depends on T), and the inflection point  is given by: 

n

FI

n

F n
nTI

1

1
1








+
−

=  for  2≥n

 
When  (Michaelis-Menten type equation) the function has no inflection point 
and its profile is a branch of a hyperbola. If n  is large (values, as large as 100, 
exist in biology 

1=n

10, 11) the control function acts almost as an on/off switch. 
Using Hill functions, we write the term controlling the secretion of A in the 

form: 
                                                 
10 P.V. Vrzheshch, O.V. Demina, S.I. Shram, and S.D. Varfolomeev. FESB Letters,  351(2), 168 
(1994). 
11 T. Mikawa, R. Masui, and S. Kuramitsu. J Biochem 123(3), 450 (1998). 
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(5) basalABdownupBA SCaFCS ,)(, )()( += , 
where  is independent of B and controls the basal secretion of A. The 
quantities 

0, ≥basalAS
α/),basal( ASa +  and α/,basalAS  represent the above mentioned  

and C , respectively. 
max,AC

min,A

As mentioned earlier, on certain occasions, the monotonousness of the 
control function may be violated. For example, if might happen that at low to 
medium concentrations a substance is a stimulator, while at high concentrations 
it is an inhibitor. Thus, the control function is non-monotonous and can be written 
as a combination of Hill functions8: 

.,
1]/[

1
1]/[

]/[
)( 21

21

1
21

1

TT
TGTG

TG
aGS nn

n

A <
++

=  

Next, assume that instead of one, two hormones control the secretion of 
A. We denote them by B and C with corresponding concentrations  and 

. The control function 
)(tCB

)(tCC ),( CBAA CCSS =  depends on the specific interaction 
between A from one side, and B and C from another8. For example, if both B and 
C stimulate the secretion of A 

(6) basalACupCBupBCBA SCFaCFaCCS ,)()(),( ++=  
if B and C act independently, or  

(7) basalACupBupCBA SCFCaFCCS ,)()(),( +=  
if B and C act simultaneously (the secretion of A requires the presence  of both). 
On the other side, if for example, the secretion of A is stimulated by B, but 
suppressed by C, the control function can be introduced as 

(8) basalACdownBupCBA SCFCaFCCS ,)()(),( += , 
or 

(9) basalACdownCBupBCBA SCFaCFaCCS ,)()(),( ++= . 
Note, that Eq. (8) simulates a non-competitive and simultaneous action of B and 
C. If B and C compete as they control the secretion of A, the secretion term can 
be described with a modified Hill function: 

(10) basalAn
CC

n
BB

n
BB

CBA S
TCTC

TCaCCS
CB

B

,1)/()/(
)/(),( +

++
= . 

 
Oscillations driven by a single system feedback loop 

In this section we discuss in detail networks with a single (delayed) 
feedback loop that can generate oscillatory behavior. We focus on 2-node/1-
feedback networks, in which the concentration of one hormone A regulates the 
secretion of another hormone B, which in turn controls the release of A.  This 
construct can generate oscillations, even if there is no explicit (direct) delay in the 
feedback12.  However, in this case the oscillations will fade to the steady state of 
the system. A non-zero delay and a large nonlinearity in the control functions 
(sufficiently high Hill coefficients) guarantee steady periodic behavior, due to the 
                                                 
12 The thresholds in the control functions provide implicit delays in the corresponding conduits. 
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existence of a non-trivial limit cycle. On the other hand, a network may 
incorporate a single feedback loop by means of only one or more than two 
nodes. We comment on some peculiarities of such models in the last section. 
 
FORMAL 2-NODE/1-FEEDBACK NETWORK.  We study the abstract endocrine networks 
shown on Fig. 2.   

A

B

(-)

elimination

(+) D

elimination

A

B

(-)

elimination

(+) D

elimination

A

B

(+)

elimination

(-) D

elimination

A

B

(+)

elimination

(-) D

elimination  
Fig. 2. Formal network of a two-node/one-feedback oscillator. The left panel depicts a network in 

which the main hormone B is stimulated, while the scheme on the right shows a model in which B 
is inhibited. D denotes a delay in the interconnection. In both networks A and B are subject to 

elimination. 
 
These particular examples anticipate that two hormones, A and B are 
continuously secreted (driven by nonrhythmic excitatory input) in certain pool(s) 
(systemic circulation, portal blood, etc.), where they are subject to elimination.  
The release of hormone B is up-(down-)regulated by hormone A. Hormone B 
itself, exerts a negative (positive) delayed feedback on the secretion of A. The 
A/B interactions are assumed to be dose-responsive. The resulting delayed 
control loop is capable of driving hormone oscillations, if certain conditions 
(discussed below) are provided. 

To formalize the networks depicted in Fig. 2, we denote the concentrations 
of hormones A and B by  and C , respectively. We assume that the 
elimination of each hormone is proportional to its concentration with positive 
constants 

)(tCA )(tB

α  and β . The secretion rate  of A is supposed to depend on the 
history of the concentration of B and vice versa. In particular, we assume that 

 and 

AS

[( 2 ChB)])()( tCStS BAA = [( 1h )])() tS A(tSB = . The functional  ( h ) 
incorporates the lag in the action of B on A (A on B). To formally introduce the 
delays, one can account for the time-averaged effect of the hormone action in a 
past time interval related to the current moment

1h 2

4. However, this method requires 
two parameters for each delayed action – the onset and the termination of the 
delayed action (see4 for details). Here, in order to keep the model as minimal as 
possible, we use a “direct” delay (with only one parameter for each delayed 
control action) and assume that the secretion control functions can be written as 

))(()( BBAA DtCStS −=  and ))(()( AABB DtCStS −= , 
with some non-negative delay times  and . Then, the system of ordinary 
(non-linear) delayed differential equations, which describes a formal two-
node/one-feedback endocrine network (Fig. 2), has the form 

AD BD
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(11)  
))(()(

))(()(

AABB
B

BBAA
A

DtCStC
dt

dC

DtCStC
dC

−+−=

−+−=

β

α
dt  

with some elimination constants 0, >βα , lag times , and secretion 
rate control  functions S . 

0, ≥BA DD
0, ≥BA S

 
REFERENCE SYSTEMS.  To describe the dose-responsive relationships between A 
and B, corresponding to the network from Fig. 2, left panel, we use the 
recommendations outlined in “Hormone release approximation” (Eq. (5)). We 
write the control functions that appear in (11) as follows 

basalABBdownBBA SDtCaFDtCS ,))(())(( +−=−  

basalBAAupAAB SDtCbFDtCS ,))(())(( +−=−  
With this special choice, the core system of first order non-linear differential 
equations, describing the network from Fig. 2 (left), have the form: 

(12) 

1)/)((
)/)(()(

1)/)((
1)(

,

,

+−
−

++−=

+−
++−=

A

A

B

n
AAA

n
AAA

basalBB
B

n
BBB

basalAA
A

TDtC
TDtCbStC

dt
dC

TDtC
aStC

dt
dC

β

α
 

The units in this model are  
 

AC , , T   mass/volume BC BA T,

basalBbasalA SSba ,, ,,,   mass/volume/time 
βα ,     time −  1

BA DD ,    time 
 

However, in the sequel we avoid specifying the specific unit and the simulated 
profiles have arbitrary magnitude, which could be rescaled with ease to fit a 
desired physiology. 

In most of the simulations we assume no basal secretions and a direct 
action of A on B (no delay). This transforms the core equations (Eq.  (12)) into: 

(13) 

1)/)((
)/)(()(

1)/)((
1)(

+
+−=

+−
+−=

A

A

B

n
AA

n
AA

B
B

n
BBB

A
A

TtC
TtCbtC

dt
dC

TDtC
atC

dt
dC

β

α
 

 
Note, that solving these equations for t  requires the initial condition for C  to 
be given on the entire interval [

0t≥
], 0t

B

0 Dt B− . 
From the special form of Eq. (13) we could easily derive that after some time 

(depending on the initial conditions), the solutions will be bounded away from 
zero and from above. More formally, for any 0>ε (and we may choose ε  as 
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small as we like), there exists  (depending on 00 >t ε , the initial conditions and 
the system parameters), such the for  the following inequalities hold and 
provide upper and lower bounds on the solution of Eq. (13):   

0tt >

α

≤)t

aε

−

+

≤−

1

1

A

β 




min

1

1

C
T

T
b

A

A

n

B

B

β
b

<
α

a
TA





An ,,

tCB ≤)(

α

1
nB

+



t A 









β

α

≤

1

1

+


 Bn











α

(14) 
εβε

β

ε
α

+≤









<

+≤

+



<

/(0

)(0

bCb

tCa

Bn

A

 

The upper bounds above are absolute system limits. For example, the model 
response to exogenous A-bolus cannot exceed the value β/b . However, since 

α/aC A < , we get from Eq. (14) that the actual endogenous peak concentration 
of B will never reach β/b . In fact, if there is no external input of energy in the 
system, it will be less than 

(15) 
β
b

An

+


 1

1 .  

Hence, changes in four parameters ( a AT, ) can model a difference between 
the maximal amplitude of the internally generated peaks and the eventual 
response to external stimulation.  All estimates may be refined through a 
recurrent procedure inherent in the core system (Eq. (13)). For example, one can 
combine the two inequalities Eq. (14) to get an explicit lower bound for C : B

(16) )(

1

1

tC

a

T
b

b
Bn

B

A

+




























β
 

Accordingly, we can use this to write an explicit upper bound for C : A

1

1

min,




≤

+







≤

B

B

n

B

B

A

T
M

a

T
C

aC
αα

, where 

1

1

1

+

























+








=

A
B

nn

B
A

a

T
bT

bM

β

β
 

These inequalities can help to determine reasonable values for the model 
parameters. 
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It is easy to see that (since the control functions are monotonously 
decreasing and increasing) the system Eq. (13) has a unique fixed point (steady 
state). It can be shown that if there is no delay ( 0== BA DD ) the fixed point is 
asymptotically stable (a node or a focus) and attracts all trajectories in the phase 
space: Fig. 3, panel A. However, even a single non-zero delay (as in Eq. (13)) 
might change the properties of the steady state. The particular stability analysis 
is non-trivial, and consists of investigating the real part of eigenvalues, which are 
roots of equation containing a transcendental term, involving the delay.   In the 
examples that follow, we will encounter one of the two situations depicted in Fig. 
3: the steady state will be either an attractor (panel A) or a repellor (panel B), and 
in the latter case, there will exist a unique asymptotically stable periodic solution 
(which encircles the fixed point in the phase space) acting as a global limit cycle 
by attracting all trajectories (except the one originating from the fixed point).  

 

attractor

limit cycle
repellor

attractorattractor

limit cycle
repellor

limit cycle
repellor

 
Fig. 3. Illustrative trajectories in the space ( ) if the steady state is an attractor (panel A) or 
a repellor (panel B). In the latter case, a unique asymptotically stable periodic solution acts as a 

limit cycle and attracts all other trajectories (except the fixed point). 

BA CC ,

 
 
OSCILLATIONS GENERATED BY A PERIODIC SOLUTION.   In this section we present two 
specific examples describing the networks in Fig. 2. The core system of delayed 
ODE for the reference models will have unique periodic solution and unique 
repelling fixed point (Fig. 3, B). 

Let consider a construct, described by the following core equations: 

(17) 

1]5/)([
]5/)([

500)(2

1]20/)3([
15)(1

2

2

2

+
+−=

+−
+−=

tC
tC

tC
dt

dC
tC

tC
dt

dC

A

A
B

B

B
A

A

 

These equations simulate the network shown in Fig. 2, left panel (A is a 
stimulator). The parameters were chosen to guarantee stable oscillations: Fig. 4.  
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Fig. 4 Dynamics of the concentration of A (the lower profile) and B, for the reference model 

described by Eq. (17). 
 
Later, we show how the parameter choice affects the periodicity. 

Even in this simple example, we have a variety of possibilities to model 
the specific interactions between A and B. In the above example we have 
surmised: 

(a) The maximal attainable amplitude of  is 250. BC
(b) The maximal attainable amplitude of  is 5. AC
(c) The threshold t  is higher then the endogenous levels of .  A AC
(d)  The threshold  is approximately 6-fold lower then the highest 

endogenous levels of C .  
Bt

B

It follows from (b) and (c) that the response of B to endogenous stimulation is 
not full. However, high exogenous bolus of B elicits dose-dependant release of 
B-secretion at levels higher then the typical endogenous B-concentration. It is 
easy to see that due to (b) the maximal endogenous B concentration is less than 
125. Due to the choice of  (see (d)), B almost fully suppresses the release of A 
between pulses, which in turn results in low intervolley B-secretion. 

Bt

To simulate the network from Fig. 2, right panel (A is an inhibitor) we use the 
following reference system of delayed ODEs 

(18) 

1]5/)([
1500)(2

1]20/)3([
]20/)3([50)(1

2

2

2

+
+−=

+−
−

+−=

tC
tC

dt
dC

tC
tCtC

dt
dC

A
B

B

B

B
A

A

 

The system parameter  in Eq. (17) was increased 10-fold (compared to Eq. 
(18)) to guarantee existence of a periodic solution.  

a

 
SIMULATION OF FEEDBACK EXPERIMENTS.   The success of a modeling effort is 
frequently measured by the capability of the construct to reproduce pivotal 
feedback experiments. Accordingly, we discuss the correct way of modeling and 
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the system reaction to three common experimental techniques, aimed to disclose 
the specific linkages within an endocrine system.  
 
Antibody infusion 

The introduction of an antibody (Ab) to a certain substance, referred here as 
S, is generally accompanied by a transformation of S, which results in effectively 
removing S from the system. The removal rate depends on the specific chemical 
reaction between Ab and S, and increasing the elimination rate of S 
(corresponding to the pool where Ab is administered) is a modeling approach 
that works in most cases. However, note that the reaction specifics may result in 
change of the single half-life pattern into a multiple half-life model, but the single 
half-life approximation still might be sufficient in the simulations.  

To exemplify the idea we simulated variable removal of the inhibitor A in the 
reference model described by Eq. (18).  Three simulations were performed, in 
which the coefficient β  was increased 2-fold (left), 6-fold (middle), or 15-fold 
(right) at time t . 75=
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Fig. 5. Simulated variable infusion (starting at t=75) of antibody to the inhibitor A in the 

reference model outlined in Eq. (18). The plots depict low (left panel), medium (middle panel), or 
almost complete (right panel) removal of A. 

 
The plots in Fig. 5 (left panel) capture a very interesting phenomenon 

predicted by the model: the decrease in the peak amplitudes of B, even though 
an inhibitor is removed from the system.  In the current model, this is explained 
by the actual increase of the rate at which A initiates its rise and reaches its 
action threshold, which, in turn, promotes an earlier suppression of B-secretion. 

 
Sensitivity modification  

Modifying the profiles of the control function models alterations in system 
sensitivity. For example, if the sensitivity of certain cell group depends on the 
number of opened receptors, we could simulate receptor blockage/stimulation via 
changing the parameters of the corresponding control function.  In the model 
described in Eq. (17), this would correspond to changes in the threshold, or in the 
Hill coefficient. Reducing (increasing) a threshold results in sensitivity increase 
(decrease). Changes in the Hill coefficient affect the slope of the control function. 
In general, increasing the Hill coefficient slightly changes the frequency and the 
amplitude, without affecting the pulsatility character of the profiles. In contrast, a 
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decrease could effectively disturb the oscillations by preventing the system to 
overshoot the steady state.  

We illustrate the effect of changing all thresholds and Hill coefficients in Eq. 
(17): Fig. 6.  
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Fig. 6.  Model response to alterations in system sensitivity.  All profiles depict the dynamics of 
. A: Changing  from 2 to 10 (left) and to 1 (right); B: Changing  from 20 to 0.2 (left) 

and to 80 (right); C: Changing  from 2 to 20 (left) and to 2/3 (right); D: Changing  from 5 to 
1/40 (left) and to 15 (right). 
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An increase in  or  (Fig. 6, A, C, left panels) produced a slight change in the 
frequency and amplitude. Decrease in  or  resulted in pulse shrinking (Fig. 
6, C, right panel) or in lost of periodicity (Fig. 6, A, right panel) if the control 
functions can no longer provide the necessary inertia for overshooting the steady 
state value. Increasing T  from 20 to 80 (Fig. 6, B, right panel) results in a 
condition in which B cannot exert the necessary suppression on A. The 
concentration of B is limited from above and increasing its action threshold 
gradually obliterates the effect of the delay containing term. Decreasing   to 
0.2 has no visual effect on the simulated profiles (Fig. 6, B, left panel). The 
pulsatility is not affected because the suppressive action of B on A is not 
modified. It only starts somewhat earlier, but there is still a 3-hour delay in this 
action, which, in this particular model, is sufficient to maintain oscillations. The 
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analysis of the effect produced by changes in T  is somewhat different. Both, 
increasing and decreasing might affect the oscillations. When T  is decreased, 
even small amount of A is sufficient to produce a full response, which obliterates 
the pulsatility (Fig. 6, D, left panel). The fact that the concentration of A is 
bounded from below independently of T  is crucial (Eq. (14)). Increasing  
results in left shift of the control function , thus, preventing A from stimulating 
B, which in turn reduces the oscillations (Fig. 6, D, right panel). 
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A more formal approach to explaining the reduction in the range of the 
oscillations (the “shrinking” of the profile) would consist of (recursive) application 
of the inequalities Eq. (14). For example, from the right hand side of Eq. (14) it is 
evident that if T  then 0→A β/bCB →  and if BT  then αCA → . 
 
Exogenous infusion.   

The correct way to simulate exogenous infusion of a hormone, which is also a 
system node, would be to add an infusion term to the right-hand side of the 
corresponding ODE. This term should correspond to the infusion rate profile in 
the real experiment. Mathematically, it might be interpreted as change in the 
basal secretion. In terms of the specific model described by Eq. (11), if we are 
simulating infusion of hormone B, the corresponding equation changes as 
follows: 

(19) )inf())()( tCtC
dt

dC
AAB

B ++−= β , 

where  is the infusion rate term. The solution of the above equation is the 
sum of both endogenous and exogenous concentrations of B. To follow the 
distinction explicitly, a new equation should be added to the system: 

)inf(t

)inf C
dt

dC
+−= β  

and  has to replaced by )(tCB )( CtCB +  in all model equations, except the 
one that describes the rate of change of the concentration of B. To sum up, the 
core equations are 

(20) 
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The model above (Eq. (20)) is in essence a 3-node/1-feedback construct, where 
exogenous B is the new node. A particular example, illustrating infusion 
simulation is shown later in this section (see “IDENTIFYING NODES, CONTROLLING 
THE OSCILLATIONS”). 

 
OSCILLATIONS GENERATED BY A PERTURBATION. In the reference models from the 
previous section the pulsatility was generated by a system that has a unique 
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periodic solution and a unique fixed repelling point. The purpose of this section is 
to demonstrate, that oscillations may occur as a result of disrupting a system that 
does not have a periodic solution, and its fixed point is an asymptotically stable 
focus (Fig. 3, A).  

We illustrate this concept on an earlier example. Fig. 6  (B, right panel) 
depicts the profile of the solution to the following delayed ODE 

(21) 

1]5/)([
]5/)([

500)(2

1]80/)3([
15)(1

2

2

2

+
+−=

+−
+−=

tC
tC

tC
dt

dC

tC
tC

dt
dC

A

A
B

B

B
A

A

 

The difference between this model and the reference construct (Eq. (17)) is in the 
4-fold increase of the threshold . In this case, there is no periodic solution and 
the unique fixed point attracts all trajectories in the phase space. Therefore, this 
system by itself cannot generate stable oscillations. However, if it is externally 
stimulated it can be removed from its steady state and oscillations will be 
detected. For example, assume that at 

BT

350=t  the secretion of B was briefly 
suppressed. This removes the trajectory in the phase space away from the fixed 
point and the system would have enough energy to initiate another waning pulse 
sequence: Fig. 7, left panel. Moreover, if we allow for some periodic external 
control on the secretion, the hormone profile displays sustained pulsatility with 
bursts of variable amplitude: Fig. 7, middle panel. The frequency of the pulses is 
controlled by the coefficients of the core system Eq. (21), while the peak 
amplitudes follows the external stimulus. 
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Fig. 7. Oscillations generated by perturbations of the system in Eq. (21). The left plot depicts a 

brief suppression of the secretion of B at t=350. The rest profiles depict external periodic (middle 
panel) or random (right panel) control on the coefficient , which determines the release of B. b

 
If the perturbation is random, it generates pulses of approximately the same 
frequency as in the previous cases, but with highly variable amplitudes. In the 
simulation presented in Fig. 7 (right panel) we superimposed 40 % Gaussian 
noise on the parameter b .  Even though some peaks cannot be detected an 
overall periodicity (the same as in Fig. 7, left and middle panels) is apparent.  

In the above examples, the perturbation was assumed to be external and 
independent of the core system. Later on, we show that a delayed system 
feedback could also provide enough energy and trigger oscillations in sub-
models with damped periodicity. In the three-node example from “Networks with 
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multiple feedback loops” a 2-node sub-system (with no direct delay in its 
feedback, and therefore, without a periodic solution) is perturbed by a delayed 
system loop via the third node. This removes the whole system from its steady 
state and drives consecutive pulses during recurrent volleys. 

 
IDENTIFYING NODES, CONTROLLING THE OSCILLATIONS. When the hormone A cannot 
be measured directly and is an inhibitor (the network in Fig. 2, right panel) we 
can test whether it is involved in generating the oscillations of B by neutralizing 
the action (A-receptor blocker) or by removing (antibody infusion) A from its 
action pool. On the other hand, if A is a stimulator (Fig. 2, left panel) a large 
constant infusion of A should remove the oscillations (by exceeding the action 
threshold, resulting in continuous full response from the target organ). This 
concept is exemplified in Fig. 8, which depicts two computer-generated 
predictions for the system response to exogenous infusion of hormone A 
(assuming that A stimulates B, Eq. (18)).  We simulated constant low (left panel) 
and high (right panel) infusion of A by increasing the basal A-secretion from zero 
to two different levels, starting at t=75.  
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Fig. 8. System response (Eq. (22)) to exogenous infusion of A. The plots show simulation of 

constant low (left panel) and high (right panel) infusion of A starting at t=75. 
 

The model predicts gradual pulse “shrinking” towards the current steady state 
level. If the exogenous administration of A is sufficiently high (right panel) the 
pulses wane and the secretion becomes constant. The profiles in Fig. 8 depict 
the numerical solution (concentration of hormone B) of the system 

(22) 
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with two different continuous infusion terms satisfying:  
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The parameters and control functions were chosen arbitrarily to simulate a 
network like the one in Fig. 2 (left panel), which generates stable oscillations.  

Almost identical results (see Fig. 5) can be achieved by simulating partial 
or complete removal of A in the case when A is an inhibitor (the network from 
Fig. 2, right panel). This should be done by increasing the rate of elimination of A 
to simulate additional removal due to infusion of antibody (see “SIMULATION OF 
FEEDBACK EXPERIMENTS” for details).  

However, these experiments cannot disclose whether A is actually 
involved in a feedback with B, or acts merely as a trigger to remove a certain 
sub-system from its steady state. For example, consider the two networks shown 
in Fig. 9 and suppose that only the concentrations of hormone B can be 
measured. 
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elimination
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elimination

B

D

elimination

(+)

(-)

D

 
Fig. 9. Two hypothetical networks, in which a hormone E stimulates the secretion of B. E 

is either involved in a delayed feedback (left panel), or removes the sub-system A-B (right panel) 
from its steady state. 

 
 

Assume that E stimulates B, and its removal obliterates the secretion of B. Since 
E cannot be measured, we have no direct means to establish whether E is 
involved in a delayed feedback loop with B. Moreover, in both networks, constant 
high infusion of E (as proposed above) removes the pulsatility and elicits 
constant secretion of B. Therefore, a more sophisticated experiment is required 
to reveal whether E is indeed involved in a feedback loop with B (Fig. 9, left 
panel) or acts by perturbing the A-B sub-system (Fig. 9, right panel). A possible 
approach would include blocking the exogenous E secretion with subsequent 
introduction of a single endogenous E bolus. The system response would be a 
single spike of B secretion, if the network were that, depicted on Fig. 9 (left 
panel), or a waning train of several B pulses if the network is the one, shown on 
Fig. 9 (right panel). Most importantly, the required suppression of endogenous E 
release might be achieved by a constant high infusion of B (or B-analog), which 
should be distinguishable from endogenous B-secretion.  
  
SEPARATING SYNTHESIS FROM SECRETION. In certain cases, it would be appropriate 
to separate on a network level the hormone synthesis from its release. This 
would be important if certain compound differently affects these processes. For 
example, let consider again the network from Fig. 2, left panel, in an attempt to 
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explain a rebound release of B following a withdrawal of continuous infusion of 
certain substance C. Assume that during the infusion of C the release of B was 
suppressed and that we have evidence that C is not affecting the release of A.  
Possible explanation of the rebound phenomenon would be that C affects the 
release of B, but not its synthesis. However, since all conduits in the network are 
affected in this experiment, the intuitive reconstruction of all processes involved 
is not trivial. The simulation requires introduction of a “storage” pool in which B is 
synthesized and packed for release and another pool (e.g. circulation) in which B 
is secreted. This adds a new equation to the model, describing the dynamics of 
the concentration of B in the storage pool. The following assumptions would be 
appropriate: 
 

1. The concentration of B in the storage pool ( ) is positively affected by 
the synthesis and negatively affected by the release. 

BP

2. The concentration P  exerts a negative feedback on the synthesis of B 
and cannot exceed a certain limit . 

B

maxP
3. The rate of release of B from the storage pool is stimulated by the 

storage pool concentration but might be inhibited by the concentration 
of B in the exterior. 

4. B is subjected to elimination only after it is secreted  
 
In order to provide an abstract example, let assume that in the network from Fig. 
2 (left) we have in addition to A and B a new substance C, that inhibits the 
secretion (competing with A), but does not affect the synthesis of B: Fig. 10.  
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D
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Fig. 10. Formal network depicting the system distinction between synthesis and release.  C 

suppresses the release of B, but not its synthesis. 
 
Using Eq. (10) as a suitable form for the “competitive” control function, we can 
describe the network by the following system of delayed ODEs:  
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Here, for simplicity, we assumed that circulating B levels do not feedback on the 
secretion. This would correspond to a model with much higher concentration in 
the storage pool than in the circulation.  In the above presentation  controls the 
rate of A-stimulated synthesis of B. The parameter 

c
θ  represents the ratio 

between the volumes of the storage pool and the pool in which B is secreted. 
Typically, the second pool is larger and 1>θ . We have supposed that the control 
functions, which correspond to the A-driven synthesis and release are different 
with distinct thresholds T  and T , and corresponding Hill coefficients n  and 

. The control, exerted on the secretion by the current concentrations of B in 

the storage pool, is presented by the up-regulatory function 
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following values were assigned to the parameters that appear in Eq. (23): 
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The infusion term C  is assumed to be a non-zero constant only during the 
time of infusion: 
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The model output is shown in Fig. 11 and the plots clearly demonstrate a B-
rebound following the withdrawal of C (Fig. 11, left panel).  
 
 

 18



Modeling of Endocrine Networks by Leon S. Farhy  3/14/2003 

Concentration of A

0

2

4

6

8

3 43 83 123 163
Time

Concentration of B in the storage pool

0

400

800

1200

3 43 83 123 163
Time

Concentration of secreted B

0

40

80

120

160

3 43 83 123 163
Time  

Fig. 11. Simulated rebound response following a withdrawal of continuous C-infusion (timeline 55 
- 95). Left panel: concentration of secreted B (in the circulation). Middle panel: concentration of B 

in the storage pool. Right panel: A-concentration dynamics. 
 
During the infusion the secretion of B is blocked, but not the synthesis and the 
concentration in the storage pool is elevated (Fig. 11, middle panel). The 
concentration of A increases (Fig. 11, right panel), since low B levels cannot 
effectively block its release. Thus, the model explains the rebound jointly by the 
augmented concentration in the storage pool and the increased secretion of A. 
 
 
 
Networks with multiple feedback loops 
The available experimental data might suggest that the release of a particular 
hormone B is controlled by multiple mechanisms, with different periodicity in the 
timing of their action. This implies that probably more than one (delayed) 
feedback loops regulate the secretion of B and the formal endocrine network may 
include more than two nodes. In determining the elements to be included in the 
core construct, it is important to keep track on the length of the delays in the 
feedback action of all nodes of interest.  For example, if the goal were to explain 
events recurring every 1 to 3 hours, the natural candidates to be included in the 
formal network would be nodes, involved in feedback or feed-forward relations 
with B with delays shorter than 3 hours. Long feedback delays cannot account for 
high frequency events. In particular, if we hypothesize that a certain delayed 
feedback is responsible for a train of pulses in the hormone concentration profile, 
the direct delay must be shorter than the interpulse interval. 
 In this section we briefly discuss some features of abstract endocrine 
networks, incorporating more than one delayed feedback loops. Each loop 
accounts for its own oscillator mechanism and in what follows, we consider 
networks with two (delayed) feedback loops. Examples of 2-feedback constructs 
are shown in Fig. 12  
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Fig. 12. Examples of hypothetical endocrine networks with more than one delayed feedback 
loops. 

 
It should be noted, that each of the two 3-node networks, shown in the middle 
panels of Fig. 12, could be reduced to its corresponding 2-node network from the 
top panels of Fig. 12.  For example, let consider the 3-node/2-feedback network 
shown in Fig. 12, middle left panel. Assuming that both B and C can fully 
suppress the release of A, we can describe the formal network by the system of 
delayed ODE: 
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Here, for simplicity, we have assumed that there is no delay in the feedback B → 
A. This system is capable of generating recurring multiphase volleys, by the 
mechanism described in ”OSCILLATIONS GENERATED BY A PERTURBATION”: Fig. 13.  
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Fig. 13. Computer-generated output (concentration of B) of the core system Eq. (24). 

 
However, analogous results can be achieved by reducing the 3-node network to 
a 2-node model with two feedbacks. In fact, the sequence of nodes and conduits 
B → C → A → B is, in essence, a negative 2-node delayed feedback loop: B → A 
→ B. Therefore, it can be modeled in the usual way (by simply removing C from 
the system). The reduced network is the one shown in Fig. 12, upper left panel. 

A corresponding simplified system of delayed ODEs could be  
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and the model output (not shown), even without any special efforts to adjust the 
system parameters, is almost identical to the profile shown in Fig. 13. 

Decreasing the number of equations from three to two reduces the 
number of parameters to be determined and the time needed for solving the 
equations numerically. This would be most important if multiple computer runs 
are required. Therefore, adding the third node in the formal network can be 
justified only if the goal is to simulate experiments, involving C explicitly. And 
even then, the initial adjustment of the model would be significantly facilitated if C 
enters the system after the 2-node construct is validated. 

Note, that if the network is more complex, the attempt to reduce the 
number of nodes might not be beneficial. For example, the network shown in Fig. 
12, lower panel, cannot be transformed into a 2-node model, due to the high 
system interconnectivity. We comment more on this in the next section. 
 
Summary and discussion 
The mathematical methods presented in this chapter are tailored to quantitatively 
interpret formal endocrine networks with (delayed) feedbacks. The main goal is 
to illustrate different conditions, under which oscillations can emerge.  
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The formal network itself, consists of nodes and conduits, and is based on 
a qualitative analysis of available experimental data7. In our presentation the 
nodes are hormone concentrations in abstract pools, in which hormones are 
released or synthesized, under the control of other hormones. The conduits 
specify how the nodes interact within the network. The quantitative analysis of 
the formal network is based on approximation of the rate of change of a single 
system node. This essentially means that the dynamics of the hormone 
concentration is described with a single (delayed) ordinary differential equation 
(ODE). To this end, we assume that the rate of change of hormone concentration 
depends on two processes - secretion and ongoing elimination. We work with 
single half-life elimination model and express the control of the synthesis as a 
combination of sigmoid Hill functions, depending on the related nodes. The 
derivation of the ODE is demonstrated, along with a brief analysis of the 
properties of its solution to facilitate the actual determination of all system 
parameters. 

The formal network is then interpreted as a dynamic system by combining 
all ODEs that describe system nodes dynamics. We exemplify the ideas on a 2-
node/1-feedback model - one of the simplest meaningful examples of a network 
capable of generating and sustaining periodic behavior.  In fact, a variety of 
systems display oscillatory behavior, driven by a single feedback loop. The 
simplest case is a 1-node/1-feedback network, in which a hormone after being 
secreted suppresses its own release, immediately or after some lag time. This 
system can generate periodic behavior, only if the delay in the feedback is 
greater than zero. We do not discuss this case here. 

A network may incorporate a single feedback loop in a more complex way, 
e.g. via a combination of two or more nodes. For example, simple stability 
analysis of the steady state shows that a 3-node/1-feedback network is capable 
of sustaining periodicity even without a delay in the feedback loop and relatively 
low Hill coefficients8,13.  However, for a variety of practical cases, it is feasible to 
reduce the 3-node/1-feedback network to a 2-node/1-feedback construct as 
shown in the previous section. 

Some specifics in endocrine network modeling are exemplified on two 2-
node/1-feedback networks, in which the concentration of one hormone regulates 
the secretion of another, which in turn controls the release of the first hormone.  
This construct could generate oscillations even if there is no explicit delay in the 
feedback. However, it will be a damped periodicity, since the oscillations will fade 
and approach the steady state of the system. In contrast, a non-zero delay 
combined with a sufficiently large nonlinearity in the control functions (high Hill 
coefficients) guarantees steady periodic behavior, as all trajectories approach a 
non-trivial limit cycle.  

We relate all parameters to their physiological meaning and analyze the 
solutions to our reference systems, which always have only one fixed point 
(steady state), which is either a repellor, or an attractor  (Fig. 3). In the first case 
the system has a unique limit cycle – a periodic solution, which attracts all 
trajectories in the phase space and, thereby generates stable periodic behavior 
                                                 
13 J. Richelle, Bull. Cl. Sci. Acad. R. Belg. 63, 534 (1977) 
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(Fig. 4). In the second case, the steady state is either a focus or a node and 
attracts all trajectories in the phase space. Therefore, the construct displays 
damped periodic behavior. In particular, if it is in a state close to the fixed point 
an external perturbation initiates a waning train of pulses (Fig. 7, upper left 
panel). Therefore, oscillations might be generated even by a system that does 
not have a periodic solution, and its fixed point is asymptotically stable. However, 
an external source of perturbations must be provided. Note, that the frequency of 
the oscillations is largely independent of the external perturbation (Fig. 7). 

We use the two reference systems to illustrate the modeling of three common 
experimental techniques: infusion of antibody to one of the nodes, sensitivity 
alterations, and exogenous infusion of one of the system hormones. We 
comment on the correct way to perform these approximations and examine the 
corresponding model response. In particular, the simulations illustrate conditions 
that might disrupt the periodicity. 

Increasing the elimination rate of a hormone simulates infusion of 
antibody, and almost a complete removal of one of the nodes, results in loss of 
periodicity (Fig. 5). Changes in the profiles of the control functions model 
alterations in system sensitivity.  The analysis shows that if a model has a stable 
periodic behavior, the increase in one of the Hill coefficients would not change 
the system performance: Fig. 6, A & C, left panels (see also14). On the other side, 
a decrease in the same parameter may transform the steady state from a repellor 
into an attractor and affect the periodic behavior. Changes in the action 
thresholds may also affect the periodicity: Fig. 6, B & D. Exogenous infusion can 
be simulated by a simple increase in the basal secretion, or by introducing a third 
node, in case we would like to distinguish between exogenous infusion and 
endogenous secretion of one and the same substance (Eqs. (19), (20)).  

We illustrate how these experiments may be used to disclose, whether 
certain hormone A is involved in generating the oscillations of another hormone 
B. The idea is to alter A in such way that the periodic B-profile is transformed into 
a constant non-zero secretion. When A inhibits B, we can neutralize its action 
(receptor blocker) or remove (antibody) it from the system. In the later case the 
model predicts that the periodicity disappears and is replaced by a stable B-
secretion (Fig. 8). Alternatively, if A stimulates B, a large continuous A-infusion 
obliterates the oscillations by exceeding the action threshold, and eliciting a 
unvarying full B-response from the target organ (Fig. 5). Additionally, the model 
provides means to disclose whether A is actually involved in a feedback loop with 
B or generates oscillations by perturbing another subsystem (see “IDENTIFYING 
NODES, CONTROLLING THE OSCILLATIONS”). 

To be able to capture a variety of feedback systems we separate on a 
network level the hormone synthesis from its release. The proper simulation 
requires a new “storage” pool in which the hormone is synthesized and stored, in 
addition to the pool, in which the hormone is secreted. We used this distinction to 
provide plausible explanation of a rebound release, following withdrawal of an 
agent that suppresses the secretion, but not the synthesis. 

                                                 
14 L. Glass and S.A. Kauffman, J. Theor. Biol., 39, 103 (1973) 
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We would like to emphasize the importance of keeping the model as minimal 
as possible while performing the initial qualitative analysis of the available 
experimental data. In general, formal endocrine networks might incorporate 
multiple feedbacks loops and nodes. However, long feedback delays cannot 
account for high frequency events. Therefore, if the model attempts to explain 
pulses of a hormone that recur every H hours, it might be sufficient to include in 
the formal network only feedback loops with delay shorter than H. Moreover, if a 
feedback loop enters the network via a multiple-node subsystem, it might be 
possible to reduce the number of nodes and simplify the model without affecting 
its performance. The example, provided in the previous section demonstrates a 
case, in which we could safely remove a “passive” node from a feedback loop, 
and still retain the overall periodic behavior.  

Unfortunately, we cannot always reduce complex networks. The model shown 
in Fig. 12, lower panel, is an example in which the system interconnectivity would 
not allow any simplification. Complex networks with intertwined feedback loops 
are considered in 2,3 and their analysis strongly depends on the specific 
physiology. It should be noted that in this chapter we do not consider more 
complicated cases, like for example, networks that have multiple steady states of 
different type, which is a significant complication. Such systems can be 
approached in the early stage of their analysis by Boolean formalization15,16 
which serves as an intermediate between modeling phases (b) and (c) described 
in the first section. This method describes complex systems in simple terms and 
allows for preliminary finding of all stable and unstable steady states. 
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