
CHAPTER 1

MODELS IN SYSTEMS BIOLOGY: THE
PARAMETER PROBLEM AND THE
MEANINGS OF ROBUSTNESS

With four parameters I can fit an elephant and with five I can make him wiggle his trunk.
—told by Enrico Fermi to Freeman Dyson and attributed to John von Neumann, [25]

1.1 INTRODUCTION

I co-teach a graduate course at Harvard called “An Introduction to Systems Biology”.
It covers some of the mathematical methods used to build mechanistic models of
molecular and cellular systems. Beginning students tend to ask two kinds of questions.
Those with a biological background say “Why do I need to use mathematical models?
What can they tell me that conventional biological methods cannot?”, while those
from the physical sciences (mathematics, physics, engineering) or computer science
say “I know how to model. Why is biology any different from physics or engineering?”.
Broadly speaking, everyone wants to know, from very different perspectives, “How
do I do systems biology?”. Students are usually under the misapprehension that the
person standing in front of them knows the answers to such questions. In my case, I
was only marginally less ignorant than the students themselves. It was their curiosity

title, edition. By author
Copyright c© 2008 John Wiley & Sons, Inc.

1



2 MODELS IN SYSTEMS BIOLOGY

and skepticism, along with a realisation that the field lacks a shared foundation for
discussing such questions, that forced me to think more deeply about the issues.

This paper is the first of at least two in which I review some tentative conclusions. It
sets out a framework for thinking about models in which I try to rise above the partisan
assertions that are sometimes made—“my kind of model is better than yours”—and
point to some of the broader themes and open problems. It should be obvious that this
can be no more than a report of work in progress and is neither complete nor definitive.
The next paper will discuss why models are being used in systems biology and what
we should expect from them [37]. Ideally, this should not be treated separately but I
found it difficult to do justice to everything in the bounds of a single paper.

For our purposes, systems biology may be defined as the emerging discipline
that asks how physiology and phenotype emerge from molecular interactions [4, 50].
Mathematical models are being used in support of this, continuing a long tradition
inherited from genetics [60, 65], physiology [39, 44], biochemistry [41, 48, 78], evo-
lutionary biology [33, 68] and ecology [63]. Models, however, mean different things
to physicists, mathematicians, engineers and computer scientists, not to mention to
biologists of varying persuasions. These different perspectives need to be unravelled
and their advantages distilled if model building is to fulfill its potential as an explana-
tory tool for studying biological systems. I begin in §1.2 by pointing out that most
mechanistic models (as opposed to those arising from “omics”) can be thought of
as some form of dynamical system. This provides a unified framework in which to
compare different kinds of models. Mechanistic models are often complex, in the
sense of having many undetermined parameters, and the parameter problem emerges
as one of the central difficulties in the field. Different disciplines provide sharply
contrasting approaches to this, as I discuss in §1.3, and this has tended to obscure
the problem in the literature. Attempts are sometimes made to resolve the parameter
problem by making assertions of “robustness”. This is generally regarded as a de-
sirable feature—who could doubt that biology is robust? However, its wide usage is
often uncorrelated with precise definition. I identify in §1.5 four kinds of robustness
which arise in the dynamical systems framework and review some previous studies in
terms of this classification. §1.4 outlines the qualitative view of dynamical systems
that forms the basis for this discussion.

Parameters and robustness are concepts that have been widely studied in mathe-
matics, engineering and statistics. My intention here is not to review this material,
for which there are many standard texts—see, for instance, [97, 101]—but rather to
show how these concepts are being used, and sometimes abused, in systems biology
and to draw attention to some of the scientific issues that arise from that.

1.2 MODELS AS DYNAMICAL SYSTEMS

Two broad directions have emerged in systems biology. The first, “omics”, initiated
by new technologies such as the microarray [79], relies on inferring causality from
correlation in large datasets (see, for instance, [82]). To the extent that models are
used, they are statistical in character. The second direction, which might be called
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Figure 1.1 Dynamical system. A point in parameter space, given by a set of parameter values,
defines a dynamics on the state space. If the system is prepared in an initial condition, then the
dynamics typically lead to an attractor, pictured here as a star. Common attractors are steady
states or periodic orbits but they can be much more complex [87]. Note that some trajectories
leave the attractor, indicating that it is unstable, as discussed in §1.4.1. The parameter and state
spaces are pictured as abstract sets. For ODE models, they usually correspond to Euclidean
spaces, Rk, of some dimension k but for other kinds of models the state space can be infinite
dimensional (PDEs or stochastic models) or not have any linear structure (discrete models).

“mechanistic” systems biology, has been less visible but has deeper historical roots
[39, 41, 44, 48, 78]. The resulting models specify molecules, cells and tissues and
their interactions based on what is known or believed to be true. It is with the latter
type of model that we will be concerned here. The subtleties of causal analysis are
well discussed elsewhere [72].

Most mechanistic models in systems biology can be regarded as some form of
dynamical system. A dynamical system describes the states of a biological system
and how these states change in time. It can be abstractly visualised as in Figure 1.1
as a state space, upon which is imposed a temporal dynamics: given a particular state
as an initial condition, the dynamics define the trajectory taken over time from that
starting point. Not all models take this form. For instance, constraint-based models
represent systems at steady state and have no explicit representation of time [70]. We
focus here on models that do.

Dynamical systems usually depend on parameters. In abstractly visualizing a
dynamical system, therefore, one should always keep in mind the parameter space
that accompanies the state space, as in Figure 1.1. The dynamics on the state space
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cannot be defined without first specifying the parameter values, thereby fixing a point
in parameter space. As this point varies, so do the dynamics.

1.2.1 Continuous models

A type of model that is frequently used is one in which the state of a molecular
component, x, is its concentration in some cellular compartment (cytoplasm, plasma
membrane, etc), which we will also denote by x and treat as a function of time,
x(t). The temporal dynamics are then described by an ordinary differential equation
(ODE) for the net rate of production of x. This is how the biochemistry of enzymes has
been modelled [18], which provides a foundation for models of molecular networks
[3, 94]. As an example, if x is produced at a (zero order) rate of a molar per second
and consumed at a (first order) rate of b per second, then

dx

dt
= a− bx . (1.1)

In this case, the dynamical system has a 1 dimensional state space, consisting of the
single state variable x, and a 2 dimensional parameter space, consisting of the two
parameters a and b. Since (1.1) is linear, it can be readily solved [42]:

x(t) =
a

b
−

(a

b
− x0

)
exp(−bt) , (1.2)

where x0 is the initial condition from which the system starts at time t = 0: x(0) = x0.
We see that no matter where the system is started from, it relaxes exponentially to
the unique steady state, x = a/b, at which production and consumption are exactly
balanced. As the values of the parameters a and b change, the steady state also
changes but the dynamics remain “qualitatively” the same. Much of the difficulty
in comprehending nonlinear, higher-dimensional systems lies in understanding how
this very simple picture has to be refined; see §1.4.

Example (1.1) is unusual in that it is explicitly solvable in a closed form in which the
parameters appear as symbols. Most dynamical systems arising in systems biology
are nonlinear and cannot be solved in this way. (Except possibly at steady state; see
§1.4.2.) They have to be studied by simulation, for which parameter values must be
specified. The difficulties with this—the parameter problem—are discussed in §1.3.

Several kinds of differential equation models have proved useful in systems biol-
ogy, reflecting the emergence of new experimental techniques. Fluorescent sensors
have revolutionised cell biology, making it possible to image specific proteins in in-
dividual living cells in real time and revealing extraordinary dynamical complexity.
Ionic calcium, Ca2+, for instance, exhibits sparks, puffs, oscillations and travelling
waves in certain cell types [24], reflecting its role as a second messenger linking
external signals (first messengers) to a spectrum of cellular responses. To model this,
spatial compartments need to be represented as two- or three-dimensional geome-
tries, rather than as unstructured entities like “cytoplasm” and “membrane”, and the
dynamics need to be described by partial differential equations, often of reaction-
diffusion type, with the compartment geometry entering into the boundary conditions
[84].
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The same fluorescent technology has more recently made it possible to measure
noise in individual cells, revealing the impact of both molecular stochasticity (“intrin-
sic noise”) and cell-to-cell variability (“extrinsic noise”) [29, 71]. Extrinsic noise can
sometimes be modelled as a probability distribution on the initial conditions of a de-
terministic model or by adding external noise terms, as in the Langevin approach [96].
Molecular stochasticity, however, requires some form of stochastic master equation
in which the state of a component is described by the probability distribution of the
number of molecules of component x, as a function of time, and the dynamics are
described by stochastic differential equations [96].

1.2.2 Discrete models

Differential equation models of the kinds discussed above are familiar in the physical
sciences, biochemistry and physiology. Biologists, however, often find it convenient
to describe gene expression in terms of discrete states—on/off or low/high—and the
development of microarray technology allows mRNA levels to be quantified into
multiple discrete levels, as in the familiar heat-maps. Genetic manipulations also
lead naturally to causal inferences expressed in Boolean logic: “in the absence of X,
Y becoming low leads to high Z”. These kinds of data and reasoning can be modelled
by dynamical systems with discrete states, where the temporal dynamics are given
by discrete transitions between states, rather than being parameterised by a global
clock, t, that marks the passage of time. When states are composed of many discrete
variables (for example, many genes), state transitions may take place synchronously,
with each variable being updated simultaneously, or asynchronously, with variables
being updated independently of each other.

Discrete models often permit abstraction from the mechanistic details [59]. Such
abstraction may lead to an absence of visible parameters, which is sometimes touted
as an advantage of discrete models over continuous models. Such assertions should
be treated skeptically. Parameters are usually insidiously hiding in the unstated as-
sumptions that accompany a discrete model. For instance, for states composed of
many discrete variables, the assumption of asynchronous timing gives equal oppor-
tunity to each interleaved sequence of updates. In reality, each variable may have
its own rate of change and a model that took these rates into account as parameters
would select some interleaved sequences in preference to others. Such distinctions
are beyond the scope of unparameterised discrete models but may sometimes have
serious biological implications.

Discrete models have a long history in biology [49, 90], prior to the recent resur-
gence of interest in them via computer science [32]. Theoretical computer scientists
view discrete models as computing machines [45]. A Turing machine, for instance,
is a discrete state/transition system coupled to a read/write memory. Computer scien-
tists are concerned, among other issues, with methods for constructing such machines;
for instance, for building complex machines out of simpler ones. This introduces a
syntactic capability that is lacking from the physical science perspective but which
becomes important in building models [43, 61].
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One way to construct a complex model is to regard it as emerging from the col-
lective interactions of independent agents, each of which has its own internal state
and can undertake computations based on rules about it’s state and the state of other
agents in the system [34, 43, 76]. For instance, each individual molecule could be
an agent and the computations undertaken by agents could represent chemical reac-
tions between molecules. Such agent-based systems capture molecular fluctuations
and can reproduce stochastic models but their syntactic structure permits additional
forms of analysis such as model-checking or abstract interpretation, which have been
important in computer science [22, 32].

This last example illustrates the limitations of Figure 1.1. In an agent-based system,
the state space may unfold with the dynamics and is then no longer a static entity.
More generally, cells produce new cells, organisms produce new organisms; one of the
characteristic features of biology is its capability for self-reproduction. There exists
no general mathematical framework for dynamical systems in which the dynamics
reconstruct the state space as they progress. Hybrid models, which combine discrete
and continuous dynamics, provide only a partial kludge [7].

Thinking in terms of dynamical systems draws attention to the state of the system.
Deciding how the state should be represented, whether coarsely as Boolean levels or
at fine grain in an agent-based description or somewhere in between as concentrations,
and how time and space should be modelled, should depend not on the disciplinary
prejudices of the modeller but on the nature of the experimental data and the kinds
of biological questions that are being asked. No one type of model is best for all
purposes.

1.3 THE PARAMETER PROBLEM

Biological systems have many “moving parts”, whose collective interactions produce
the physiology or phenotype of interest. Two general strategies have emerged to
model this complexity. One seeks to bring the model’s assumptions close to reality
by embracing the details of components and interactions. The resulting models are
thick, with many states and more parameters. The other strategy moves in the op-
posite direction and seeks to abstract the essentials from the details, giving rise to
thin models with fewer parameters. Despite parochial assertions to the contrary, both
strategies have provided biological insight; their pros and cons are discussed in the
companion paper to this [37]. In both cases, but most especially with thicker models,
the problem arises of determining parameter values in a way that maintains credibility
in a model’s conclusions. The importance of this problem has tended to be obscured
in the literature for several reasons. On the one hand, it is easier to assert (particularly
to an experimental audience) “This model accounts for the data” than “This model,
with these parameter values, accounts for the data”. The latter formulation invites
awkward questions as to why those parameter values were chosen and not others.
(One might have included “initial conditions” along with parameter values but since
the initial conditions are values of state variables, they share the same level of measur-
ability and are, therefore, usually easier to determine than parameter values.) Even if
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editors and reviewers are aware of the problem—and it seems they are mostly not—
they are generally disinclined to ferret about in the Supplementary Information, to
which graveyard such technical details are usually consigned. Finally, such a variety
of approaches have something to say about the problem that it is hardly surprising to
find confusion as to best practice. Here, we emphasize the significance and centrality
of the parameter problem by contrasting different disciplinary perspectives of it.

1.3.1 Parameterphobia

Parameters are anathema to physicists, who take the view expressed in the quotation
from von Neumann that, with enough parameters, any behaviour can be modelled.
Of course, von Neumann was joking: a weighted sum of increasing functions with
positive weights (parameters) can never fit a decreasing function, no matter how many
parameters are used. (See §1.4.2 for a more relevant example.) However, the truth
behind the joke distills a long tradition of modelling the inanimate world on the basis
of the fundamental laws of physics. Biology, while founded entirely upon these laws,
is not modelled in terms of them. Molecular or cellular behaviour is not deduced from
Schrödinger’s equation. At best, a model may be based on chemical principles, such
as the law of mass action. At worst, it may rely on some ad-hoc guess that is only
tenuously related to specific biological knowledge, let alone an underlying molec-
ular mechanism. We have, in such cases, no systematic methodology for avoiding
parameters.

While physicists are familiar with parameters and keep them firmly in their place,
computer scientists (at least those of a theoretical disposition) are less acquainted with
them. The discrete models used in theoretical computer science, like finite automata
or Turing machines, have no parameters [45]. (They may have labels but these are
passive adornments that do not effect the rate of state transitions.) When discrete
models are parameterised they transmogrify into Markov chains, whose properties
are more commonly studied elsewhere than in computer science. In consequence,
computer science has had little to say about the parameter problem.

1.3.2 Measuring and calculating

Ideally, parameter values should be independently measured. In practice, our limited
ability to make quantitative measurements of molecular states makes this difficult if
not impossible for many parameters. Even when parameters have been measured,
the conditions may have been sufficiently different as to raise doubts as to the rel-
evance of the measurements. In-vitro values, for instance, may differ substantially
from those in vivo, while in-vivo measurements themselves may require very careful
interpretation [85]. Nevertheless, such measurements as do exist are often useful for
initial analysis. Molecular dynamics (MD) calculations—arising from atomic-scale
models—can now provide illuminating explanations of intra-molecular behaviour
[88]. Certain kinds of parameters, such as binding constants, might be calculated
from such MD models. Since these calculations are limited largely by computational
power, it would be unwise to bet against them in the long run, but it seems unlikely
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that they will yield a systematic approach anytime soon. They will, in any case, be
limited to only certain kinds of parameters and to molecules whose atomic structures
are well understood.

1.3.3 Counter fitting

Engineers are accustomed to building thick models with many parameters—of chemi-
cal reactors or combustion chambers, for instance—and determining parameter values
by fitting to quantitative data [101]. This is the strategy most widely adopted in sys-
tems biology when sufficient data of the right kind is available. The development of
nonlinear optimisation algorithms has made parameter fitting easy to undertake but
has also concealed its dangers. These take several forms. The structure of a model
may render it non-identifiable a priori: it may not be possible, even in principle prior
to any data fitting, to determine certain parameter values. Even if a model is iden-
tifiable, the fitting process itself may need to be carefully examined. The reported
optimum may be only local. Even if a global optimum is found, there may be several
parameter sets which yield roughly similar optimal values. In other words, the energy
landscape underlying the optimization may be undulating with many optimal valleys
rather than a broad funnel leading to a single optimum. A classic example is that of
fitting a sum of two exponentials; see, for instance, Figure 4.6 of [57].

The second and more serious danger in model fitting brings us back to the broader
significance of von Neumann’s quip. How is a model to be rejected? The answer
“when there are no parameter values that fit the data” would not have satisfied von
Neumann because, in his view, a model that is complex enough may fit all manner of
data. In other words, the rejection criterion is inadequate. As we will see in §1.4.2,
the behaviour of biochemical models is more subtle than this: models with arbitrary
many parameters may sometimes have the simple qualitative behaviour shown by
equation (1.2). The core issue may be restated in terms of explanatory power. A
model does not explain the data to which it is fitted; the process of fitting already
incorporates the data into the model.

Of course, parameter fitting is widely used in other areas of science. An X-ray
crystal structure, for instance, is obtained by fitting an atomic model to diffraction
data, with many free parameters (bond angles, bond lengths, etc). In such cases,
independent cross-validation is used [14]. The data are partitioned into two sets:
“test” data and “working” data. Parameters are determined by fitting on the working
data. Having been fitted, they are used to account for the test data. If they do, the
model is accepted; if not, it is rejected. Hodgkin and Huxley used a similar strategy for
their famous model of the action potential in the squid giant axon [44]. The parameters
were fitted in independent experiments on each of the three ion channels. Once fitted,
the model, with those parameter values, was shown to numerically reproduce the time
course of the action potential. Another strategy is to use wild-type data as working
data and mutant data to test it by computationally mimicking the effect of the mutation
[2]. As these examples make clear, a model’s explanatory power comes from being
able to account for data to which it has not been fitted.
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Merely showing that quantitative data can be accounted for with some choice of
parameter values can be such an effort, particularly with thick models, that it is often
regarded as sufficient in itself. While this is easy to get away with, at least at present,
it is not a good foundation for a new discipline.

1.3.4 Beyond fitting

Determining a specific set of parameter values and accounting for novel data is only
part of the parameter problem. We have a general suspicion of models that are fine-
tuned, for which some parameters require precise values. They are not “robust”.
(Much the same argument is made about unstable steady states; see §1.4.1.) Robust-
ness is a good feature, so the argument goes, because there are always errors, often
substantial errors, in measuring and fitting data. Related systems might also be ex-
pected to show qualitatively similar behaviour but not have quite the same parameter
values. If a model can be shown to be robust to changes in parameter values, then
one can be more confident in drawing conclusions from it despite such uncertainties.
There may also be properties of a model which are robust to variation in certain pa-
rameter values, like temperature compensation in circadian oscillators. Identifying
such properties may yield biological insight; see §1.5.3. Aside from such robustness,
which we will discuss further in §1.5, there may not always be sufficient quantitative
data, or data of the right type, to fit all parameter values. The available data may,
for instance, not be numerical but qualitative, as in developmental patterns. Finally,
models can also be used in an exploratory way to understand how to think about a
system in the first place, prior to any determination of parameter values. In all these
cases, it becomes important to know how the model’s behaviour varies as a function
of parameter values. This is the broader aspect of the parameter problem. To address
it, a more qualitative view of dynamical systems becomes necessary.

1.4 THE LANDSCAPES OF DYNAMICS

1.4.1 Qualitative dynamics

Although the general ideas outlined in this section apply to most forms of dynamical
system, they are best understood for ODE models [87, 94]. Figure 1.2 illustrates, in
a simple case, the kind of behaviour to be expected of a model similar to example
(1.1), in which

dx

dt
= f(x; a) , (1.3)

where x ∈ Rn is a vector of state variables, a ∈ Rm is a vector of parameters and
f : Rn → Rn is the vector rate function expressing the balance between production
and consumption of each xi. Biological state variables are frequently non-negative
(concentrations, for instance) and the state space may then be taken to be the non-
negative orthant of Rn. For any given set of parameter values, the trajectory starting
from a given initial condition will typically converge upon an attractor: a limited
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Figure 1.2 Qualitative dynamics. a, c, d show different patterns of trajectories on the state
space—the nonnegative quadrant of R2—of the ODE model dx1/dt = bx2 − x1, dx2/dt =
a(1 + x3

1)/(10 + x3
1) − x2, adapted from [69]. Each figure shows the trajectories starting

from the initial conditions with integer coordinates on the boundary of the box defined by
the origin and (5, 4). Note that the vertical axis is the same in each figure but the horizontal
axis varies. Black square denotes a stable steady state, yellow square an unstable saddle
point. Blue trajectories go to the state with high x1 value, red trajectories to the state with
low x1 value. Figures a, d have only a single basin of attraction leading to a stable state.
Figure c has three basins of attraction corresponding to bistability. The dashed line marks
the approximate location of the (1 dimensional) basin of attraction of the saddle point, which
provides the boundary between the two larger (2 dimensional) basins leading to the stable states.
b shows the parameter space for the two parameters a and b divided into regions corresponding
to parameter values with qualitatively similar dynamics. Note the bifurcations—creation or
destruction of steady states—that arise as the boundaries of regions are crossed, a behaviour
that was absent in example (1.1). Both basins of attraction and parameter regions can be much
more complex than in this simple example, particularly in higher dimensions.
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region of the state space within which trajectories become confined. For instance,
the trajectory may reach a steady state, as in example (1.1), or a periodic orbit, as in
models of the cell cycle [94], circadian rhythms [64] or developmental clocks [58].
Chemical systems can also have more complex attractors and exhibit behaviours like
bursting and chaos [15], which may have some biological role in the excitable tissues
found in cardiac and neural systems [54]. A dynamical system may have several
different attractors for a given set of parameter values. A familiar instance in systems
biology is bistability [31, 69, 94], in which a dynamical system has three attractors,
consisting of two stable steady states and one unstable steady state (Figure 1.2c). In
this case, different initial conditions may reach different attractors and each attractor
will have its own basin of attraction consisting of those initial conditions which lead
to it. The state space breaks up into multiple disjoint basins of attraction, each leading
to a unique attractor.

The geometry of a basin of attraction reveals something of the dynamics leading
to the corresponding attractor. For instance, a steady state is stable if its basin of
attraction has the same dimension as that of the ambient state space (dimension 2 for
the two stable states in Figure 1.2c). If its dimension is lower, then moving away from
the attractor along one of the missing dimensions leads outside the basin of attraction
and towards some other attractor. This is the case for the saddle point in Figure 1.2c for
which the basin of attraction has dimension 1. The argument is made that an unstable
steady state is never found experimentally because random perturbations (“noise”)
would destabilise it. Stable states are “robust” to such perturbation. Consequently, a
steady state of a model that is claimed to represent some observed behaviour should
always be checked to be stable. However, if only a few dimensions among hundreds
are missing from a basin of attraction, then it may be possible for the system to
linger in the corresponding steady state for an appreciable time, relative to the noise
time scales in the system, before becoming destabilised. Our experience of high-
dimensional systems is still too limited to know how significant this might be.

The dynamics may also satisfy constraints, which complicate the above picture.
We will return to this in §1.5.2.

The dimension of a basin of attraction can often be estimated in the local vicinity of
an attractor. For instance, the Hartman-Grobman theorem [23] tells us that for a rea-
sonable (“nondegenerate”) steady state, x = x∗, the local dynamics are qualitatively
the same as those of the linearised system, in which the full dynamics represented by
f(x) is replaced by the linearised dynamics

dx

dt
= J(x∗)x (1.4)

where J(x) is the n × n matrix of first partial derivatives (the Jacobian), J(x) =
∂fi/∂xj . Since linear equations are solvable, (1.4) gives considerable information
about the local vicinity of steady states, including the (local) dimension of the basin
of attraction [42]. In contrast, rather little is known, in general, about the global
geometry of basins of attraction. Are they large or small and is their shape long
and thin or short and squat? A characteristic difficulty in dynamical systems derived
from differential equations is that local behaviour may be accessible (a derivative is a
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Figure 1.3 Waddington’s epigenetic landscapes. As he put it, “A multidimensional phase
space is not very easy for the simple-minded biologist to imagine or to think about.” [99,
Page 27]. (He refers to the state space by its alternative name of “phase” space.) a Waddington
abstracted dynamics on the high-dimensional state space of a developing embryo into a picture
of a ball rolling down an inclined landscape into a branching fan of valleys and coming to
rest at the end of one of them [99, Figure 4]. The end points represent different attractors,
corresponding to different differentiation states of the organism. b Waddington’s analogy for
the action of genes on development shows the underside of the landscape being maintained
by guy ropes in tension [99, Figure 5]. Each peg represents a gene which can have multiple
effects and each attachment point can have multiple genes influencing it. Changes to a single
gene may sometimes have little effect on the dynamics, depending on the background of the
other genes.

measure of local slope) but global behaviour can be very challenging to analyse. For
new developments in this direction see, in particular, [38, 75].

Systems biology forces us to confront the subtleties of global dynamics in high-
dimensional spaces. This was already apparent to Conrad Waddington over fifty
years ago [99]. His “epigenetic landscape” (Figure 1.3a) was an attempt to create a
visualisable analogy for the complex dynamics through which an egg gives rise to an
adult organism. (Sewall Wright’s earlier “adaptive landscape” had a similar heuristic
intent for the dynamics of genotypes during evolution but lacked the moving parts
[104].) The epigenetic landscape continues to provide a conceptual basis for thinking
about biological dynamics in high dimensions [47]. While many biologists are now
familiar with the ball rolling down the valleys, fewer are aware of the mathematical
models that Waddington used to arrive at this analogy [99, Chapter 2].

The picture of trajectories in state space holds for a given set of parameter values.
If we now imagine moving through the parameter space, the pattern of trajectories
will change (Figure 1.2b). In general, the parameter space itself also falls into disjoint
regions. Within each region the pattern of trajectories remains qualitatively (“topo-
logically”) similar. It is as if the trajectories were inscribed on rubber and the rubber
is stretched: while distances change, the connectivities remain the same. Different
parameter regions, however, exhibit qualitatively different patterns (Figure 1.2b). In
moving between regions, attractors may appear or disappear or change their dynam-
ical characteristics, for instance from stable to unstable, and the trajectories may
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reorganise themselves accordingly. Such bifurcations are usually key features of the
overall behaviour [87].

Waddington was well aware of the role of parameters and illustrated them through
the use of guy ropes, representing genes with pleiotropic effects (Figure 1.3b). While
this gives a vivid illustration of systems behaviour, it is less satisfactory in giving a
sense of the landscape of parameter space. Waddington was a remarkable scientist,
who, more than any other, anticipated modern systems biology [66] and disman-
tled some of the barriers between biology and mathematics—see §1.5.4. He was
marginalised in his own time partly because he was so far ahead of it in thinking
about development, genetics and evolution as an integrated system. It is good to see
his reputation restored for a modern audience [83].

For a given dynamical system, it would be useful to know, at least, the number of
parameter regions and, for each region, the number of attractors and their types. No
general methods are known for eliciting such details but some partial insights have
come from different mathematical approaches.

1.4.2 Steady state attractors of ODE models

Chemical Reaction Network Theory Example (1.1) has only a single parameter
region and only a single attractor—a stable steady state—for all parameter values in
that region. Remarkably, more complex models may still exhibit similar behaviour.
This emerges from Feinberg’s Chemical Reaction Network Theory (CRNT) [30];
see [36] for an overview and other references. CRNT applies to the ODE model
coming from a network of chemical reactions by applying the principle of mass
action. It associates to such a network a nonnegative integer called the “deficiency”,
which does not depend on the values of the parameters but only on the underlying
network of reactions. The deficiency is the dimension of a certain linear subspace,
reflecting one of the key insights of CRNT: behind the nonlinearity of mass-action
kinetics, there exists a remarkable degree of hidden linearity [36]. Under reasonable
conditions, deficiency zero networks behave like example (1.1): provided constraints
are respected (see §1.5.2 for an explanation of constraints), there is a single parameter
region and only a single stable steady state for all parameter values in that region
[30, 36]. This theorem is important because it shows that thick models, with many
parameters, may nevertheless have simple qualitative dynamics. One cannot always
fit an elephant! Having said that, the “deficiency zero theorem” is too restricted to be
widely useful in systems biology, where parameter values have typically been found
to influence the qualitative dynamics. Recent developments in CRNT may be more
relevant [20] and the full implications of CRNT for systems biology remain to be
worked out.

Monotone systems The dependence of the qualitative dynamics on the param-
eters can often be calculated for ODE models with only two state variables. The
method of nullclines provides a geometric guide to the existence of steady states and
there are mathematical theorems, like that of Poincaré-Bendixson, that help identify
more complex attractors like periodic orbits [87]. Such methods are strictly limited
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to two dimensional systems. Sontag and others have shown, nevertheless, that the
steady states of certain high-dimensional ODE systems, with many state variables and
parameters, correspond to those of an associated two-dimensional system [8]. There
are several requirements for this method to work; among the most crucial is that the
high-dimensional system is monotone, meaning, roughly speaking, that its dynamics
preserve an underlying order on the state space (for full details, see [8]). Powerful
mathematical results are known for such monotone systems, upon which is based the
reduction from many dimensions to two. For a model that satisfies the requirements,
monotone theory shows that the steady state behaviour and its parameter dependence
is no more complex than would be expected for the associated two-dimensional model.
This can be an useful tool when it can be applied.

If an enzymatic reaction is modelled in the standard biochemical manner [18], with
an enzyme-substrate complex and mass-action kinetics, then it is not monotone. It
becomes monotone in the quasi steady-state approximation, which leads to the famil-
iar Michaelis-Menten rate function. While continuing to be widely used in complex
models, the Michaelis-Menten function is suspect for at least two reasons. First, in the
context of a single enzyme acting on a single substrate, it emerges through a singular
perturbation based on a separation of time scales, which is only known to be accurate
under certain conditions on the enzyme and substrate [80, 95]. Second, because the
enzyme-substrate complex is removed from the dynamics (which is what makes the
perturbation singular), the approximation cannot capture enzyme sequestration when
there are many substrates present. This can readily lead to errors. The “total quasi
steady state” approximation appears safer in both respects [16]. It would be inter-
esting if a separation of time scales argument could be found that was both broadly
accurate and also resulted in monotonicity.

Algebraic geometric methods As the previous discussion suggests, there is
much to be said for constructing a model directly from a network of chemical reactions
using the principle of mass action. This is a systematic procedure which allows the
biochemistry to be modelled in a realistic form. (Of course, the sheer complexity of
biology makes this infeasible in general.) Mass action has one other consequence,
which has, until recently, been largely overlooked. If the rate function f(x; a) in
equation (1.3) comes from some network of chemical reactions by mass action, then
it is always a polynomial function of the state variables, x1, · · · , xn. Accordingly,
the steady states of the system, at which dx/dt = 0, correspond to an algebraic
variety [19]. One of the interesting features of algebraic geometry, which it shares
with linear algebra, is that it can be undertaken over an arbitrary coefficient field.
In particular, the set of steady state solutions, {fi(x; a) = 0}, can be regarded as
an algebraic variety over the field R(a) of real rational functions in the parameters,
a1, · · · , am. In other words, the parameters can be treated as uninterpreted symbols,
rather than as actual numbers, to which can be applied, nevertheless, all the usual
arithmetic operations of addition, subtraction, multiplication and division.

While this possibility is evident, it has not previously been exploited because there
appeared to be nothing one could say about the geometric structure of the steady state
variety. Recently, we have shown that for multisite phosphorylation systems, the
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steady state variety forms a rational algebraic curve over R(a) [62, 92]. Rationality
provides an explicit description of the steady states, which, together with the abil-
ity to roam algebraically over the parameter space, leads to unexpected insights. We
show that such systems can have a parameter region with multiple stable steady states,
whose maximum number increases with the number of sites, suggesting that multisite
phosphorylation, which plays a key regulatory role in most cellular processes, can
implement complex information processing [91]. The method also yields stringent
quantitative predictions which, nevertheless, do not require parameter values to be
known or estimated [62]. While these results are currently limited to multisite phos-
phorylation, they suggest that algebraic geometric methods and symbolic parameter
analysis may have wider application to the parameter problem in systems biology.

The freedom to treat parameters as algebraic symbols applies only to the steady
state; the dynamics, which depend upon derivatives and infinitesimal procedures, are
fundamentally non-algebraic. It remains an interesting question, however, to what
extent other attractors, such as periodic orbits, can also be analysed symbolically.

1.5 THE MEANINGS OF ROBUSTNESS

Robustness is one of the themes to have emerged in systems biology [6, 11, 52, 86]
and it is particularly relevant to the parameter problem. Unfortunately, it is also one
of those concepts whose wide usage has not been matched by precise definition. Ro-
bustness means, broadly, that some property of the system remains the same under
perturbation. To make this precise, it is necessary to say what the property is, in
what sense it remains the same and what kinds of perturbations are being considered.
The property might be the overall qualitative dynamics of a system, in which case
“remaining the same” could mean that the number and type of attractors and the
connectivity and shape of the trajectories remain the same under perturbation. Alter-
natively, the property could be a quantitative function evaluated on an attractor, like
the period of a periodic orbit. In this case, “remaining the same” could mean that the
property remains quantitatively unchanged under perturbation (“exact robustness”)
or that it only changes by a limited amount (“approximate robustness”). As for per-
turbations, at least three different kinds can be distinguished: changes to parameter
values, changes to initial conditions and changes to the functional form that describes
the dynamics (ie: the f in equation (1.3) for an ODE model). These perturbations
have distinct mathematical and biological implications. We will discuss the first two
as preparation for reviewing some influential studies of robustness and then return to
the third.

1.5.1 Parameter biology

Consider an ODE model derived by the principle of mass action from a network
of biochemical reactions. In this case, the parameters are rate constants of various
kinds: association rates, disassociation rates, catalytic rates, etc. Such rates are,
hopefully (see the next paragraph), intrinsic features of the corresponding proteins
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and would not be expected to change except through alterations to their amino acid
sequences. This could happen on an evolutionary time scale, so that different species
may have different parameter values, but this would not be expected to happen in
different cells of the same organism or tissue or clonal population of cells in cell
culture. The situation could be a different in a polyclonal population, such as a tumour
or a natural population of outbred organisms, in which there could be substantial
genetic polymorphism. Depending on which loci exhibit polymorphism and how it
affects protein function, this genetic variation could give rise to rate constant variation
between different cells or different organisms.

(A caveat is essential here. Rate constants are not solely determined by intrinsic
features of a protein. They also depend on the ambient conditions in the cell—
temperature, pH, other ionic strengths—as well as, potentially, post-translational
modifications such as disulphide bridges or glycosylations, or the presence of ac-
cessory molecules such as chaperones or scaffolds, none of which might have been
included in a model. The reductionist approach commonly used in systems biology,
in which the properties of a system are deduced from its components, is always at
risk of the system biting back: the properties of the components may depend on that
of the system [37]. To put it another way, the boundary of a system has to be drawn
somewhere, with the implicit assumption that what is outside the boundary is irrele-
vant to the behaviour inside. Such assumptions tend to be taken for granted until they
fail.)

Models are not always deduced from mass action. For instance, separation of time
scales is often convenient, if not essential, in reducing complexity. Whether this is
achieved through the suspect “quasi steady state”, or the safer “total quasi steady
state”, approximations discussed in §1.4.2, it necessarily leads to parameters which
are no longer rate constants. Similarly, models of allosteric enzymes [56, 67] or rate
functions for gene expression in terms of transcription factor binding [1] are also based
on separation of time scales and lead to rational algebraic rate functions resembling
the ubiquitous Hill functions. (Despite their very wide usage, Hill functions are not
derived from any approximation and have no well-founded mechanistic interpretation
[18].) The basic issues can be discussed for the Michaelis-Menten formula

rx

k + x
, (1.5)

in which r, the maximal rate, and k, the Michaelis-Menten constant, are the two
parameters. Of these, k is derived from rate constants [18] and may hence be assumed
to vary only under the same conditions. Notice, however, that this depends on the
underlying mechanistic derivation of (1.5) and on the assumptions behind it. As for r,
it is, in terms of the usual derivation [18], a product of a catalytic rate and an enzyme
concentration. The enzyme is not formally part of the dynamics but its concentration
can change on multiple time scales. On a physiological time scale the concentration
is set by the balance between synthesis and degradation and could readily vary from
cell to cell within a single organism, tissue or clonal population through differences in
cell volumes, intrinsic noise in transcription/translation and stochastic partitioning of
molecules during cell division. In polyclonal populations, genetic variation or gene
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copy number variation could introduce additional variation in concentration levels.
These factors would also play a role on a longer evolutionary time scale. As we
see, the biological interpretation of changes to parameter values depends both on the
model and the nature of its parameters as well as on the biological context that is
being modelled.

1.5.2 Robustness to initial conditions

If the property thought to be robust is associated to an attractor, such as a steady
state, then its robustness to initial conditions would seem to follow from the stability
of the attractor, in the sense discussed in §1.4.1. However, it is often the case that
the dynamics satisfy additional constraints. For instance, an enzyme suffers no net
change in concentration in any reaction that it catalyses. If it is not being otherwise
synthesized or degraded then its total concentration remains constant at all times. Sim-
ilarly, if a substrate exists in many states of modification—multisite phosphorylation,
for instance—and is also not synthesized or degraded, then its total concentration
remains constant. (Note that these constraints are linear in the state variables; non-
linear constraints may also be possible.) If there are k independent constraints, they
confine the dynamics to lie within a subspace of dimension d = n − k, where n is
the dimension of the ambient space. The state space thereby becomes divided into
“slices” of dimension d, each corresponding to a set of constraint values (Figure 1.4).
Within each slice, the dynamics behave as they did in Figure 1.1, with attractors,
basins of attraction and stability, as appropriate to an ambient space of dimension
d (not n). However, its qualitative character can change with the constraint values.
Hence, the constraint space also becomes divided into regions, within each of which
the dynamics in the corresponding slices remain qualitatively similar (Figure 1.4).

Unlike variation of parameters, rather little seems to be known about variation of
constraints. Parameters and constraints are mathematically distinct. Parameters can
be chosen independently of initial conditions, while constraints cannot. Parameters
define the dynamics; constraints confine the dynamics. The biological implications
of the two forms of robustness can be quite distinct; see §1.5.3.

In summary, for properties associated to an attractor, robustness to initial con-
ditions may take two forms. If initial conditions are varied within the same set of
constraint values, then it corresponds to stability of the attractor and the dimension
and shape of the basin of attraction in state space (with respect to the effective am-
bient space of dimension d) provide measures of it. If constraint values are varied,
then robustness goes beyond stability and the dimension and shape of the appropriate
region in constraint space become relevant.

1.5.3 Robustness in reality

With this background, let us review some particularly interesting and influential
demonstrations of robustness in different biological systems.

Signalling in bacteria is typically implemented by two-component systems con-
sisting of a sensor kinase coupled to a response regulator protein [102]. The sensor
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Figure 1.4 Dynamical system with constraints. The state space becomes divided into “slices”,
represented by the blue lines, each slice corresponding to a set of constraint values, represented
by a point in the space of constraints. Note that if the invariants are nonlinear, then the slices
may be curved spaces. The dynamics are confined within the slices. If an initial condition
is chosen within a slice, then the trajectory remains within that slice for all time; trajectories
never cross between slices. The dynamics within a slice can have attractors, represented by
stars, and other features as described in Figure 1.1 but their qualitative character can change as
the constraints vary, as illustrated by the appearance and disappearance of attractors.

autophosphorylates in response to a signal, using ATP as the phosphate donor. It
then transfers the phosphate to the response regulator, which initiates the signalling
response, by, for instance, stimulating gene transcription. In some two component
systems involved in homeostasis—such as the EnvZ/OmpR system which regulates
osmolarity in Escherichia coli—-the sensor also catalyses the dephosphorylation of
the response regulator. This unusual bifunctional mechanism has been studied in sev-
eral models [12, 77, 81], whose general conclusion is that the mechanism enables the
amount of phosphorylated response regulator at steady state to be constraint robust
with respect to changes in the total amounts of sensor and response regulator. The
initial analysis by Russo and Silhavy using Michaelis-Menten kinetics [77], which
provided the first indication of this robustness, was subsequently refined using mass-
action kinetics by Batchelor and Goulian [12]. Their analysis showed approximate
constraint robustness when the amount of sensor kinase is much less than the amount
of response regulator, which, indeed, corresponds well to E. coli’s normal operating
regime. In their accompanying experimental analysis they varied the total amounts
of EnvZ and OmpR and found good agreement with their model. Shinar et al incor-
porated a further element into the mechanism by noting that in certain bifunctional
two-component systems [81, Table 1], including the EnvZ/OmpR system in E. coli,
ATP acts as a cofactor in the dephosphorylation of the response regulator. Their model
for this shows exact constraint robustness of the amount of phosphorylated response
regulator, with respect to changes to the total amounts of sensor, response regulator



THE MEANINGS OF ROBUSTNESS 19

and ATP, provided the amount of response regulator remains above a threshold. These
predictions were also borne out by experiment.

E. coli has also been a model bacterium for the study of chemotaxis. It moves
by rotating its multiple flagella. Rotation in one direction brings the flagella into
alignment, allowing the bacterium to “run” in a straight line. Rotation in the other
direction drives the flagella apart, causing the bacterium to “tumble” and randomly
reorient its direction. By regulating its tumbling frequency, the bacterium can effi-
ciently seek out nutrients and escape poisons (chemotaxis) in environments that lie
outside its control. Because E. coli is so small, it has to sense changes in ligand
concentration over time, not space. It has been found to adapt its sensitivity to such
changes across a remarkably broad range of background concentrations. Unravelling
the mechanism behind this has been a triumph of systems biology [13].

Barkai and Leibler [10] studied robustness of the precision of adaptation in E.
coli by simulation of an ODE model. For a given chemotactic ligand concentration
the system appears to reach a steady state, presumably stable, irrespective of the
other parameter values. To measure the precision of adaptation, the activated state
of the receptor was evaluated at steady state for zero ligand and for a fixed saturating
concentration of ligand (1mM) and the ratio of the latter to the former, denoted p,
was taken as a measure of the precision of adaptation. If p = 1, the adaptation is
“perfect”. There are three constraints in the model, corresponding to the total amounts
of the receptor and the two chemotactic enzymes CheR and CheB, which implement
adaptation by methylating and demethylating the receptor. The constraints and the
parameters were randomly sampled and it was shown that the precision of adaptation
remains close to 1 despite substantial perturbation around a reference model with
physiologically realistic parameters and constraints.

This analysis reveals both constraint robustness and parametric robustness. In his
commentary on [10], Hartwell invoked them both (implicitly) by suggesting that the
robustness explains why chemotactic behaviours are buffered against the extensive
polymorphism seen in outbred natural populations [40]. This is an attractive argu-
ment but it would be bolstered by knowing how much the genes in the chemotactic
network are specifically affected by this polymorphism. How much of this variation
contributes to variation in rate constants and how much to variation in concentration
levels? Is the robustness in the model consistent with the actual level of variation
seen in natural populations? Because of the implications for human physiology and
disease, there are increasing data on polymorphisms in human populations [17] but
few studies on how this affects the function of specific molecular systems or even
individual proteins (see, for instance, [93]). In a subsequent paper with Alon and
Surette [5], only constraint robustness was experimentally verified. Concentrations
of chemotactic proteins were varied and the precision of adaptation was measured
in individual bacteria. In these circumstances, each bacterium in a clone would be
expected to have different concentrations of proteins through intrinsic noise in the
transcriptional machinery and stochastic partitioning between daughter cells. The
precision of adaptation was found to be very close to 1 [5, Table 1]. The experimental
data are well explained by constraint robustness. However, since the parameters are
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all rate constants, the data are not at all explained by parametric robustness. We see
that these two types of robustness are distinct both mathematically and experimentally.

Morphogens are spatial signals that direct patterning in embryonic development
[103]. They have been found to exhibit remarkable levels of robustness between
different embryos [46, 26]. In a series of penetrating studies in Drosophila, Barkai
and others used robustness as a design principle to identify molecular mechanisms
that implemented it [26, 27]; for overviews, see [11, 28] and [4, Chapter 9]. They as-
sumed a network of molecular interactions based on what was known in the literature
and that the concentrations of the network components could vary between embryos
because of polymorphisms in the population. By sampling points in parameter space
(“numerical screening”), they identified regions in which the spatial profile of the
morphogen exhibited robustness to changes in initial concentration levels of the net-
work components. While these parametric regions were tiny (< 1% of the sampled
points) they could be interpreted as particular kinds of mechanisms. The underlying
models in these spatial studies are PDEs rather than ODEs but the qualitative frame-
work of §1.4 can be used in much the same way and we see that the robustness here
is to changes in the state space rather than the parameter space.

It would be interesting to know whether robustness to changes in the state space
on a physiological time scale arises from the same mechanisms as robustness to
changes in the parameter space on an evolutionary time scale, or whether different
aspects of the molecular circuitry are responsible. As Waddington recognised [99],
physiological robustness may lay the foundation for evolutionary adaptation (“genetic
assimilation” as he put it); see also [51]. The different types of robustness discussed
here may provide a framework for studying such questions.

1.5.4 Structural stability

Robustness with respect to functional variation—perturbing the f in equation (1.3)—
has not been as widely utilised as the kinds of robustness described above. However, it
was the basis for a remarkable historical episode which still has resonance for us today.
Waddington’s distillation of biological dynamics inspired the distinguished French
pure mathematician René Thom to develop a mathematical framework for describing
it [100]. Thom made two general assumptions. First, that the dynamics arose from
descending down a gradient, so that f(x; a) = −∇g(x; a), where ∇ =

∑n
i=1 ∂/∂xi

is the gradient operator. Waddington’s epigenetic landscape has just such a gradient
dynamics but for Thom the assumption arose from technical necessity rather than
analogy and, in his case, the parameters play a key role. In gradient dynamics, steady
states correspond to minima of the gradient function, g, which provides a crucial
simplification. Second, Thom assumed that, in the absence of detailed knowledge
about the underlying molecular mechanisms that gives rise to g, it was reasonable
to focus on structurally stable behaviours. That is, those behaviours that remained
qualitatively the same if the function g was perturbed, g → g+h, where h is “small”.
Under these assumptions, Thom proved that, for small numbers of parameters (m ≤
5), there were only finitely many—in fact, just eleven—different types of structurally
stable bifurcations [74, Chapter 7]. Note that the state space can be of any dimension.
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Furthermore, most bifurcations that have been studied tend to depend on only a few
parameters, with the others playing only a background role. Hence, in practice, the
restriction to m ≤ 5 is not limiting.

The subtitle to Thom’s book, “An outline of a general theory of models” [89],
reflects the broad view he took of the scope of these results. The theory remains
deep and difficult. Thom was himself a Fields medallist but could only guess parts
of the argument and had to enlist the help of other mathematicians to complete the
details. Later work filled in some gaps and clarified its place within mathematics,
where it is now largely absorbed into bifurcation theory and singularity theory [9, 23].
Poston and Stewart remains the most accessible account [74]. Thom’s own book [89],
“transcends the world of numbers”, as the back cover puts it.

What is important about Thom’s theorem is that it gives the first hint that even
very complex dynamics may still be composed of only a small finite number of key
“motifs”. At the same time, from our vantage point, the difficulties with Thom’s as-
sumptions become much clearer. First, the dynamics arising from molecular networks
are rarely of gradient type. Second, it is not reasonable to perturb f in an arbitrary
way, since the resulting perturbed function may not have arisen from any molecular
network. What is required, instead, is a restricted notion of structural stability in
which perturbations are confined to a biochemically realistic sub-class.

We unwittingly undertook a computational study of this in the context of develop-
mental patterning in the Drosophila embryo [61]. In an influential paper, von Dassow
et al had found that the segment polarity gene regulation network was parametrically
robust [98] (using the language developed here) and the evolutionary implications of
this were widely cited [103]. However, their model was based on a regular hexagonal
lattice of cells, which is far from the normal structure of an epithelium [35]. Moreover,
because cellularisation in Drosophila takes place late in embryonic development, the
segment polarity network has to operate without knowing in advance what lattice of
cells has emerged. If the cellular lattice is changed, the effect on the model is to
change f in a biochemically realistic manner, through alterations in cell-to-cell com-
munication. Hence, robustness to lattice variation is a form of restricted structural
stability. Our paper was concerned with computational infrastructure for building
models rather than with structural stability (the relevance of which was unclear at
the time) but our limited analysis suggested that the segment polarity network was
structurally unstable despite being parametrically robust. We speculated that small
changes to the underlying molecular network might render it robust to lattice variation
but were unable to pursue this further.

In our analysis, the robustness operates on the physiological and not the evolution-
ary time scale. However, molecular networks can be reorganised during evolution,
which can change both nodes and links, as well as parameter values and expression
levels. Restricted structural stability might be the appropriate type of robustness with
which to study this.

We see from this that Thom’s ideas remain relevant, despite being largely forgotten.
His approach came to be called “catastrophe theory” and garnered great celebrity,
being compared to Newton’s theory of gravitation and mechanics. The resulting fall
from grace was predictably brutal [55, 105]; for a more balanced perspective, see
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[9, 106]. While most of those who know of it think it dead and buried, I think, in
contrast, that it has merely been dormant, waiting for systems biology to provide a
more fertile landscape for Thom’s ideas to germinate again.

1.5.5 Classifying robustness

One reason why robustness has attracted such attention is that it may be a biological
design principle, [52]. This is an appealing idea but to make sense of it, robustness
needs to be precisely defined and grounded in the kind of careful experiments dis-
cussed in §1.5.3. As we have shown, there are different types of robustness, which
may be classified according to which aspect of the dynamical system is changed.

• Type I: dynamical stability. Robustness to change of initial conditions within
a fixed set of constraint values.

• Type II: constraint robustness. Robustness to change of constraint values.

• Type III: parametric robustness. Robustness to change of parameter values.

• Type IV: structural stability. Robustness to change of the dynamical function.

No doubt there are others. As noted in §1.5.1, the interpretation of these mathematical
properties depends crucially on the biological context that is being modelled. Robust-
ness could be quantified if we could estimate the size and shape of various regions in
high-dimensional spaces: basins of attraction, constraint regions, parameter regions.
Many studies can be seen as attempts to do this by random sampling [10, 98]. Lack
of space precludes a discussion of robustness trade-offs [21, 52] and new methods
of global sensitivity analysis [38, 75]. Kitano has remarked on the need for a theory
of biological robustness [53]. The dynamical systems framework outlined here may
provide a basis for this.

1.6 CONCLUSION

One of the difficulties for students of systems biology is to make sense of the many
different concepts and techniques that are coming into the subject from the physical
sciences and computer science. Those of us who have been trained in these other
disciplines necessarily take a particular perspective (as will be evident to readers
of this paper) and it is ultimately our students who bear the burden of harmonis-
ing this cacophony. Steven Pinker tells the story [73] of indentured labourers from
different language groups being brought together on some remote island under colo-
nial occupation. The first generation cobbles together a form of communication—a
“pidgin”—which suffices for getting along on an everyday basis. It is the second gen-
eration who, spontaneously and magically, creates a fully-fledged natural language, a
“creole”. It should be evident that this paper is written in systems biology pidgin. Let
us hope that, in time, our students will teach us how to write systems biology creole.
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