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Abstract: 
In this paper we will look at the SIR model for the mathematical modeling of diseases.  
We will discuss the mathematics behind the model and various tools for judging 
effectiveness of policies and control methods.  We will complete the paper with an 
example using the infectious disease Varicella, commonly known as the Chicken Pox. 
 

1. Introduction 
One of the most basic procedures in the modeling of diseases is to use a 

compartmental model, in which the population is divided into different groups.  The SIR 
Model is used in epidemiology to compute the amount of susceptible, infected, and 
recovered people in a population.  It is also used to explain the change in the number of 
people needing medical attention during an epidemic.  It is important to note that this 
model does not work with all diseases. For the SIR model to be appropriate, once a 
person has recovered from the disease, they would receive lifelong immunity. The SIR 
model is also not appropriate if a person was infected but is not infectious [1,2]. 

 
 

2. S-I-R Model 
2.1. Assumptions 

The SIR Model is used in epidemiology to compute the amount of susceptible, 
infected, recovered people in a population. This model is an appropriate one to use under 
the following assumptions [3]: 

1) The population is fixed. 
2) The only way a person can leave the susceptible group is to become infected. 

The only way a person can leave the infected group is to recover from the 
disease.  Once a person has recovered, the person received immunity. 

3) Age, sex, social status, and race do not affect the probability of being infected. 
4) There is no inherited immunity. 
5) The member of the population mix homogeneously (have the same 

interactions with one another to the same degree). 

2.2. SIR Formulas   
The model starts with some basic notation: 
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is the number of susceptible individuals at time t 
is the number of infected individuals at time t 

is the number of recovered individuals at time t 
N is the total population size 

The assumptions lead us to a set of differential equations.  

     (1) 

     (2) 

      (3) 

where k is the recovery rate (with greater or equal to zero), is the probability of 
becoming infected, is the number of people infected person comes in contact with in 
each period of time on average,  is the average number of transmissions from an 
infected person in a time period (with greater or equal to zero), and 

      (4) 
 From these equations [3,4], we can discover how the different groups will act as 

 We can see from equation (1), that the susceptible group will decrease over time 
and approach zero. From equation (3), we know that the recovered group increase and  
will approach N over time. How the infected group behaves is more complicated.  We 
start by taking the integral of equations (3) from 0 to t, which gives us 

.       (5) 

We then manipulate equation (4) to get  
.     (6) 

By combining equations (5) and (6) we get 

           (7) 

When we take the integral from zero to infinity of right hand side i.e. , that this 

integral is less than infinity, since the amount of people in a group must be finite.   By 
combining this integral with equation (7), we get that as t goes to infinity  

.  

Since goes to zero, and , which is equal to , goes to zero.  Thus as t 

goes to infinity  as given by  Mimmo Iannelli [5].   
The rate of change of the infected group is not always negative or zero as it is in 

the susceptible group, nor is strictly positive or zero like the recovered group.  Whether 
the rate of change is positive or negative depends on k, , and S(t). We can see from 
equation (2) when is less than k then the rate of change for the infected group is 
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negative.  If is greater than k then the rate of change for the infected group is 
positive.  Finally, if  is equal to k, then the rate of change for the infected group is 
zero.  

By applying Euler’s method of systems, we can solve the differential equations.  
The solutions to the differential equations are: 

          
        (8) 

          (9) 
          (10) 

where  , and  are the number of susceptible, infected and recovered people 
at time (n+1).  is a small change in time, and will be equal to one from now on[6]. It is 
important to note, that researchers and health officials first collect data on who is in what 
group at a given period of time.  The amount of people in a group does not come from 
equations (8),(9),and (10). These equations are primarily used to calculate  and . 

The recovered group includes people who receive life-time immunity, however it 
does not specify if the person is alive with life-time immunity or dead.  We can therefore 
replace equation (3), with one equation for people who that live and one equation for 
those who die.  To do this we actually start by splitting the recovery rate, k, into two 
recovery rates.  These rates are (the recovery rate for those who live) and  (the 
recovery rate for those that die).  We now can replace the rate of change for the recovered 
group. In its place, we have two equations, one for death ( ) and the other for immunity 
( ) [6]. Specifically 

 

 

Using Euler’s method for systems, the solutions to the above equations become 

 

where  and  are the number of immune and dead people at time (n+1)  . 
Again, we will have be equal to one.   
 
2.3. Basic Reproductive Ratio 

An important part of modeling diseases is the Basic Reproductive Ratio, denoted 
as .  The Basic Reproductive Ratio is important since it tells us if a population is at 
risk from a disease.   is affected by the infection and removal rates, i.e. , and is 

obtained by .  When , the occurrence of the disease will increase. 

When , the occurrence of the disease will decrease and the disease will eventually 
be eliminated. When , the disease occurrence will be constant [7].   
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 The Basic Reproductive Ratio also helps us predict who will not become infected 
at all.  This is done by looking how the SIR model behaves as  Mathematicians 
Kermack and McKendrick came up with the equation , where  is 
the amount of people who will always remain in the susceptible group [8]. 
 
2.4. Herd Immunity Threshold  

Keely [8] defined the term Herd Immunity as the process where “for each person 
that is vaccinated the risk of infection for the rest of the community decreases.”  In other 
words, Herd immunity is when almost everyone has the disease, and there are not enough 
of those who have not had the disease to cause an epidemic.  One purpose of vaccination 
is to create herd immunity while having the amount of infected people to be very small 
[8]. The Herd Immunity Threshold ( ) is percentage of the population that needs to be 
immune to control transmission of a disease, i.e. equal to one.  The equation given by 
Diekmann and Heesterbeek [4] for figuring out the Herd Immunity Threshold is 

 

 As the amount of vaccinations increase, the herd immunity threshold also 
increases.  By decreasing the amount of susceptible people, the herd immunity threshold 
decreases.  
 
2.5. Effective Reproductive Number 

Effective Reproductive Number, denoted , is the average number of secondary 
cases generated by an infectious case during the epidemic. To calculate this number, we 
multiply the basic reproductive ratio by how many people are susceptible at time t, that is 

 . 
The Effective Reproductive Number is important since it helps researchers and 

health officials determine how effective their policies on controlling the disease are. 
When , the policies concerning the containing of the disease are effective as given 
by the UC Berkeley School of Public Health [9].  

 
2.6. Control Vaccination Number 

The Control Vaccination Number, denoted , is the average number of 
secondary cases generated by an infectious case during epidemic with control measures, 
i.e. vaccinations. To calculate this number using following formula 

           (11) 
Where h is the vaccine efficacy (the effectiveness of the vaccine) and f is vaccination 
coverage (the fraction of the population that has been vaccinated).  The goal of 
researchers and health officials to have . With having , we are able to 
calculate the fraction of the people in a population that need to be vaccinated as given by 
the UC Berkeley School of Public Health [9].  To this we have  and use basic 
algebra to manipulate (11) to get 
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. 

3. Varicella Example 
3.1. Varicella Background  

Varicella, also known as the Chicken Pox, is a common infectious disease 
featuring an itching rash and red poxes. It is spread person to person, by way of sneezing, 
coughing, sharing food or drinks, the touching of the fluids from an open sore, and from 
exposure of five or more minutes. The incubation period of Varicella is about fourteen to 
sixteen days.  A person is infectious from one or two days prior to the onset of poxes 
until the last pox has crusted over (total about eight days).  Varicella is an extremely 
contagious disease, with the probability of becoming infected 65-85%, and 90% when in 
close contact [10].  Before the vaccine, there was a high mortality rate. Now that the 
vaccine is available, the probability of dying from Varicella is .000093 as seen in the 
Morbidity and Mortality Weekly Report by the Center for Disease Control [10]. 
However, the vaccination is only 99% effective the first year, and decreases after that.   
 
3.2. SIR Model and Varicella 
Varicella is a disease that we can model using the SIR model.  The assumptions in 
section 2.1 are all satisfied.  For our example, population is made up of 100 people that 
mix homogeneously.  Since the disease is highly infectious, everyone will eventually 
become infected. In Tables 1 and 2 are the cases we calculated, where we can see how 
many people will be in each state at a given period of time. We start with everyone being 
susceptible to the disease, and then one person suddenly becomes infected. Also a period 
lasts 8 days. In these cases, we had everyone recover in one period, meaning that the 
recovery rate, k, is equal to one.  It is important to note that the equations (8), (9), and 
(10), were not used to make these cases, as these are just fabricated scenarios.  
 

 
 
 
 
 

 
 
 
 
 
 
 

 
From Tables 1 and 2, we can calculate . To do this we manipulate equation (8) using 

 to get the following 

 

 State 
Period S I R 

0 100 0 0 
1 99 1 0 
2 35 64 1 
3 12 23 65 
4 4 8 88 
5 1 3 96 
6 0 1 99 
7 0 0 100 

Table 1: The number of cases in each state 
per period for =0.65 

 State 
Period S I R 

0 100 0 0 
1 99 1 0 
2 15 84 1 
3 2 13 85 
4 0 2 98 
5 0 0 100 

Table 2: The number of cases in each 
state per period for  =0.85 
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Using this equation we can get the  for each period. These  are shown in the following 
tables:  
 

  Period Beta 
0 0 
1 0 
2 0.646465 
3 0.010268 
4 0.028986 
5 0.09375 
6 0.333333 
7 0 

Average 0.1391 
Table 3: The different for 

each period and the average 
 and =0.65 

 
 
3.3. The Effects of Infectious Rate and the amount of Initial Infectious persons 

One of the most important part of disease modeling is the infectious rate.  
Varicella’s infection rate is somewhere between 65-85% as calculated by Debby Golonka 
[11].  This number affects the amount of people in the susceptible, infected, and 
recovered groups, and how long it takes until everyone that will get the disease, recovers 
from it. The next set of graphs shows how the infectious rates affects the amount of 
people in the susceptible, infected, and recovered groups, controlling for initial amount of 
people that are infected for our two cases ( and ).  

 

 
Figure 1: The effect of the infectious rate on the susceptible group 

 
We can see from Figure 1, the population with higher alphas, the amount of 

susceptible people decreases faster than that of a smaller alpha.  
 

Period Beta 
0 0 
1 0 
2 0.848485 
3 0.010317 
4 0.076923 
5 0 

Average 0.155954 
Table 4: The different for 
each period and the average  

and =0.85 
 



 7 

 
Figure 2: The effect of the infectious rate on the recovered group 

  
We can see from Figure 2, the population with the higher the alpha, the recovered 

group increases sooner than that of a small alpha.   

 
Figure 3: The effect of the infectious rate on the infectious group 

 
We can see from Figure 3, the population with the higher alpha has a higher peak, 

i.e. when the infectious group’s population reaches its peak, there is more in the 
infectious group with  at .85, than that of a smaller .  We can also see that it takes 
longer for the infectious population to reach zero with the smaller .  

Another important factor in disease modeling is the amount of people infected 
initially. The next series of graphs shows how this number affects the amount of people 
in the susceptible, infected, and recovered groups, while keeping the infectious rate at .65 
for our two populations. 
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Figure 4: The effect of the amount of initial infectious persons on the susceptible group 

 
From Figure 4, we can see that with the increase in the people who are initially 

infected, the time it takes for the susceptible to converge is less.  As the initial amount of 
people infected increases, the line showing the population becomes more curved and less 
jagged.  

 
Figure 5: The effect of the amount of initial persons on the infected group 

 
From Figure 5, we can as we increase the amount of initial infected people, the 

faster the infected group goes to zero.  It is interesting that as we decrease the initial 
amount of infected people, the peak is increased.  In addition, when the initial amount of 
infected people, is half the population, the infected group’s peak comes before the peaks 
of the groups where the initial amount of infected people is less than half the population. 
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Figure 6: The effect of the amount of initial persons on the recovered group 
 

As with the susceptible group, we can see from Figure 6 when we increase the 
amount of people who are initially infected that the time it takes for the recovered group 
to converge, is less. As the initial amount of people infected increases, the line showing 
the population becomes more curved and less jagged. 

 
 
3.4. Varicella’s Basic Reproductive Ratio 

Since we now know  for our outbreak of Varicella, we can calculate the Basic 
Reproductive Ratio.  When the probability of becoming infected is 65%, 

.  When the probability of becoming infected is 85%, 

.  In general for Varicella, is usually between ten 

and twelve [13].  The reason that our numbers are different from the actual , is because 
ours are from just 2 cases, while the actual ’s calculated from many different cases.  
As we can see from our ’s (and from the actual ’s), that . Thus the disease can 
not be eliminated (though in our case no more people can become infected).  
 
3.5. Varicella’s Herd Immunity Threshold  

Since we now know the Basic Reproductive Ratio, we can calculate the Herd 
Immunity Threshold,  . From our cases, when the probability of becoming infected is 

65%, . When the probability of becoming infected is 85%, 

. If we use the established basic reproductive ratios for 

Varicella, we can calculate the herd immunity threshold to be 0.90-0.9167. 
 
3.6. Varicella’s Effective Reproductive Number 
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We can calculate the Effective Reproductive Number, , for our two cases.  We 
get the following tables (Tables 5 and 6) that show the Effective Reproductive Number at 
each period 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
We notice <1, at period 4 when the probability of becoming infected is 0.65, 

and period 3 when the probability of becoming infected is 0.85. This means that any 
policies that were implemented were effective. We can calculate the maximum fraction 
of susceptible people for <1 in general for Varicella. When =10, 

then . That is, less than ten percent of a population would be 

susceptible for <1 and implemented polices for control are effective. When =12, 

then . That is, less than 8.3 percent of a population would be 

susceptible for <1 and implemented polices for control are effective. 
 
3.7. Varicella’s Control Vaccination Number 

We can calculate the Control Vaccination Number, , for Varicella.  Research 
has shown that that the vaccine has 99% effectiveness in the first year, and after eight 
years the effectiveness drops to 87% [12]. The vaccination coverage for Varicella among 
teenagers in 2007 was 75.7% for one dose and 18.8% for the second dose [14].  We have 
calculated for various  and doses for different vaccine efficiency as shown in 
Tables 7 and 8.  

 
 

 
 
 
 
 
 

 

t S  
0 100 13.91 
1 99 13.7709 
2 35 4.8685 
3 12 1.6692 
4 4 0.5564 
5 1 0.1391 
6 0 0 
7 0 0 
Table 5: for each period for 

=.65 

t S  
0 100 15.595 
1 99 15.43905 
2 15 2.33925 
3 2 0.3119 
4 0 0 
5 0 0 
Table 6: for each period for 

=.85 

 ,  1 dose ,  2 doses 

10 2.5057 8.1388 
11 2.75627 8.95268 
12 3.00684 9.76656 

Table 7:  for different  and doses 
when h=0.99 

  1 dose  2doses 

10 3.4141 8.3644 
11 3.75551 9.20084 
12 4.09692 10.03728 

Table 8:  for different  and doses 
when h=0.87 
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In Tables 7 and 8, we can see that among teenagers in 2007, researchers and 
health officials have not reached their goal of having .   

We can calculate what the coverage would need to be in order to have . 
This coverage would be the same for one and/or two doses. This is shown in the 
following tables (Tables 9 and 10).  

 
 
 
 
 
 
 
 

 
We can see from Tables 9 and 10 that when the effectiveness is 99%, then 

between 90.9-92.6% of the population need to be vaccinated in order for .  When 
the effectiveness is 87%, then between 103.4%-105.4% of the population need to be 
vaccinated in order for .  However, it is not possible to vaccinate over 100% of the 
population.  Therefore when the vaccination is 87% effective the researcher’s and health 
officials are unable to meet their goal of having .  

We can calculate what the effectiveness needs to be for various vaccination 
coverage percentages and still have .  This is shown on the following table. 
 

  Vaccination Coverage 
 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

10 9 4.5 3 2.25 1.8 1.5 1.286 1.125 1 0.9 
11 9.090 4.545 3.030 2.273 1.182 1.515 1.299 1.136 1.010 0.909 
12 9.166 4.583 3.056 2.292 1.833 1.528 1.310 1.146 1.019 0.917 

Table 11: The effectiveness needed to be for various vaccination coverage and still have  

 
We can see from Table 11, no matter the Basic Reproductive Ratio is, the 

coverage needs to be 90% or more to have the vaccination efficiency be possible.  The 
following table (Table 12) gives what the coverage needs to be in order to have  
and 100% efficiency for various Basic Reproductive Ratios.  
 

 
vaccination coverage for 100% 

vaccination efficiency 
10 90% 
11 90.90909% 
12 91.66667% 

Table 12: The coverage needed to be in order to 
have  and 100% efficiency for various 

Basic Reproductive Ratios 
 

 f 
10 0.90909 
11 0.91827 
12 0.925926 

Table 9: Vaccine Coverage 
needed for various  and 

h=0.99 

 f 
10 1.03448 
11 1.0449 
12 1.05393 

Table 10: Vaccine Coverage 
needed for various  and 

h=0.87 
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Thus in order to have a  with 100% vaccination effectiveness, we would 
only need to vaccinate 90-91.666% of the population.  
 

4. Conclusion 
 The SIR Model is used in the modeling of infectious diseases by computing the 
amount of people in a closed population that are susceptible, infected, or recovered at a 
given period of time.  The model is also used by researchers and health officials to 
explain the increase and decrease in people needing medical care for a certain disease 
during an epidemic.  From numbers generated by the SIR model researcher’s health 
officials can calculate different numbers that allow them to see if policies are effective 
and if occurrence of the disease is increasing, decreasing, or stable. We have used 
Varicella as an example of how the SIR model works. However, the SIR model has some 
serious disadvantageous. The population has to be fixed and the population needs to mix 
homogeneously.  The model does not take into account any variation in the disease 
among people of different sexes, races, or ages.   
 The SIR model is the basis for other similar models. The SI model, also known as 
the SIS model, is the model where once a person is no longer infectious, this person 
becomes susceptible once again. The common cold can be modeled with the SI model. 
There is also the SEIR model, where people are categorized as susceptible, exposed, 
infected, or recovered.  The SIR model can be adjusted to include variation due to 
seasonal changes as seen by Bauch and Earn [2].  
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