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1. Introduction

The observation of gamma ( 30-100Hz) oscillations in many areas of the brain has inspired
numerous modeling efforts and theoretical investigations [Buzsaki2012a] into the possible
mechanisms and functions of the rhythm. Most of these studies have focused on the effects of
network architecture and parameter values on network synchronization at gamma frequen-
cies [Wang1996][Gouwens2010] [Christoph2003][Borgers2012] [Karbowski2000] [Chow1998]
[Buzsaki2012a]. More recently, some have considered these mechanisms in the broader
neural context in which gamma-generating populations may receive temporally patterned
inputs, including inputs modulated at gamma frequencies [Borgers2005] [Christoph2008]
[dorea2008] [Gielen2010] [Serenevy]. An increasing number of researchers in this area
are focusing on the hypothesis that coherence between gamma-rhythmic neuron popula-
tions modulates the effectiveness of information transfer, often called the “Communica-
tion Through Coherence” (CTC) hypothesis [Fries2009] [Womelsdorf2007b]. But only
a handful have posed the important question of how such coherence is maintained and
manipulated, and these focus mainly on numerical observations and heuristic arguments.
None that we know of have taken a systematic, theoretical approach to the problem of
establishing coherence between multiple gamma-rhythmic populations.

In this manuscript, we use an assortment of mathematical tools in order to investigate the
properties under periodic forcing of gamma-generating circuits. We focus on the simplest
model of gamma generation, called Interneuronal Network Gamma (ING), in which a self-
inhibiting neuronal population alternatingly fires a volley of spikes and recovers from its
self-inhibition on the time scale of a gamma cycle [Whittington1995][Whittington2000].
We also consider Pyramidal-Interneuronal Network Gamma, in which pyramidal cells fire
a spike volley, evoke an inhibitory spike volley, recover slowly from inhibition, and repeat
[Whittington1997] [Whittington2000]. These two processes share the key mechanism
of slowly-decreasing inhibition that rapidly resets when it is overcome by excitation.

We do not examine the mechanisms of synchronization and desynchronization: these have
already been studied extensively [Wang1996] [Gouwens2010] [Christoph2003] [Borgers2012]
[Karbowski2000] [Chow1998] [Buzsaki2012a]. Instead, we will consider only systems
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that have already reached and are maintaining tight synchrony, and are driven homoge-
neously by a temporally-patterned signal. By restricting our scope in this way, we are
better able to tease out the properties distinctive to the rhythmic mechanism itself, as
opposed to those brought about by noise, heterogeneity, etc.

Here we make two major claims about this rhythmic mechanism when it is subjected to
periodic forcing, both of which we explain and qualify analytically:

(1) Its dynamics are constrained to periodic and quasiperiodic behavior.

(2) When it is phase-locked to a periodic pulse, it is monostable (only one stable phase-
locked trajectory exists).

The distinctive properties of this mechanism are easiest to identify and understand in
contrast to the properties of the relaxation oscillator. As a representative example of the
relaxation oscillator, we use the well-studied Fitzhugh-Nagumo (FN) model. In the next
three sections, we compare the mechanism of relaxation oscillations to the ING/PING
mechanism, and we use this comparison to help us contextualize and explain the unique
properties listed above.

The first section reviews results from the theory of forced oscillators. We review the prop-
erties of flows on a torus, and in particular the limitation of such flows to periodic and
quasiperiodic motion. We recall that a limit-cycle oscillator under sufficiently weak forcing
is constrained to an attracting invariant torus in phase space; however, the strength of
forcing that is sufficiently weak to guarantee the persistence of the invariant torus depends
on the properties of the system.

In particular, the Fitzhugh-Nagume (FN) relaxation oscillator close to its singular limit
retains an invariant torus only for extremely weak forcing. Once the torus vanishes, the
forced relaxation oscillator also acquires a wider range of dynamic behaviors, including
stable period doubling and chaos [Croisier2009]. We also note that forced relaxation os-
cillators generally have parameter regimes in which two periodic orbits are simultaneously
stable when the forcing period is slightly longer or slightly shorter than the natural period.
We argue in the discussion section that these properties make a forced relaxation oscillator
a poor candidate for communication through coherence (CTC).

In the second section, we define a simple three-dimensional model of forced ING, in which
a synchronous population of inhibitory neurons repeatedly emerges from decaying mutual
inhibition, spikes, and instantly restores maximal mutual inhibition, all under the influence
of periodically-patterned drive. We find that this system maintains a globally attracting in-
variant torus when trajectories converge sufficiently between each spike. Such convergence
may arise from two different sources: synaptic saturation and sustained inhibition. When
this convergence condition is met, the ING system’s asymptotic dynamics are strictly con-
strained to an invariant torus, and therefore consist entirely of periodic and quasiperiodic
orbits.
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We also show that when the ING oscillator phase-locks to periodic pulsatile input (assumed
for purposes of the proof to consist of square pulses), only one stable periodic orbit may
exist, so it always phase-locks with the same phase offset from the forcing. We argue that
the combination of a persistent attracting invariant torus and monostable phase-locking
makes it an ideal candidate for CTC.

In the third section, we define a model of a forced PING oscillator that lives in five dimen-
sions (including forcing) instead of three, but behaves very similarly to the ING oscillator
when the E-cell is periodically forced and the membrane time-constant of its inhibitory
population is small. We show that for sufficiently low I-cell membrane time-constant, the
dynamics of PING with a forced excitatory population are very similar to the dynamics of
forced ING; in particular, the asymptotic dynamics of periodically forced PING are also
constrained to an invariant torus, on which its dynamics are similarly restricted.

2. Context

2.1. Flows on Tori. We shall find it very useful do draw a distinction between systems
constrained to an invariant torus and systems free from this constraint. We recall that
periodic forcing may be introduced into a model by adding a circular variable Φ representing
the phase of the forcing period, with Φ̇ constant. If this variable is introduced into a
system with an asymptotically stable limit cycle but remains uncoupled from the rest of
the system, the limit cycle in full phase space is an asymptotically attracting invariant
torus. By Fenichel’s result on the persistence of normally-hyperbolic invariant manifolds
[Fenichel], this torus must persist and continue to attract when the coupling between Φ and
the other variables is sufficiently weak. If the forcing is made stronger, however, this torus
may be topologically altered or destroyed. This generally corresponds to a transition to
chaotic dynamics. For more information on this transition and the discussion that follows,
see e.g. [Schuster] and [Rasband].

While this torus persists (and forward and backward flows on it are unique), the asymptotic
dynamics of the forced oscillator are limited to the dynamics possible on the surface of a
two-dimensional torus. Flows on the 2-torus do not allow period-doubling bifurcations: a
period-doubled solution would necessarily cross the unstable solution that remains after
period-doubling. For the same reason, two phase-locked solutions with different locking
ratios (e.g. 1:1 and 2:1 locking) cannot coexist on a torus. The only dynamics possible on
the surface of a 2-torus are quasiperiodic (described by a function of two periodic motions
with an irrational ratio) and periodic. Generally the phase-locked states on the torus are
arranged in order of phase locking ratio along a “devil’s staircase,” in which phase locking
ratios with smaller denominators persist over a larger subset of a parameter space, all phase
locking ratios are represented, and phase locked states are separated by short windows of
quasiperiodicity.
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We note that the existence of an invariant torus is implied by the existence of an invariant
circle under a Poincare map. (This is directly analogous to the fact that a fixed point
under a Poincare map implies the existence of a limit cycle.) If a Poincare map on a
transverse section of a continuous flow takes a topological circle of points back to itself and
preserves the circle’s orientation, then the forward flow of the circle traces out a torus; since
the torus is made up of complete trajectories, it is invariant under the flow. If the circle
asymptotically attracts all initial points in the section, then all trajectories passing through
the section are asymptotically attracted to the torus. We use this simple result to prove
the existence of attracting invariant tori in later sections.

This method of proving the existence of an invariant torus is particularly useful for systems
with discontinuous jumps: the induced map on a section may still be a homeomorphism on
an invariant circle. In this case, the invariant set in the full space is a broken torus; but
if the circle of points is mapped homeomorphically across each jump, then by identifying
points before the jumps with points after them we can create a topology in which the
invariant flow takes place on an unbroken invariant torus, and dynamics on its surface are
constrained to periodic and quasiperiodic orbits (see Figure 1).

Invariant tori are particularly useful in spiking systems. In a neural model with a Poincare
section corresponding to a “spike,” we can define a Poincare map from the state at one
spike to the state at the next. If the full state space is only two-dimensional, this is a one-
dimensional map, so the value of a single variable at a spike determines the system state at
the next spike. In the following sections and in a number of other publications, this variable
is time or the phase of an ongoing forcing oscillation, and the map is called a “spike map”
[Brette2003] (though other publications refer to it as a “firing map” [Carrillo2001], “firing
time map” [Goel2002] or “spike-time map” [Tiesinga2002a]). In higher dimensional sys-
tems, no single variable at a spike can determine the state at the next. But if the Poincare
map possesses an attracting invariant circle (i.e. the full system possesses an attracting
invariant torus), a one-dimensional map may be defined on the invariant circle; after the
system becomes close to the torus, this map begins to act as a spike map and can be used
to study the asymptotic dynamics of the system.

2.2. The Relaxation Oscillator and Phase-Locking. Here we study the phase-locking
properties of a periodically-forced relaxation oscillator. As a generic exemplar of such an
oscillator, we study the periodically-forced Fitzhugh-Nagumo (FN) oscillator, defined by
the equations


τ v̇ = v − v3 − w + εI(Φ)

ẇ = v − c− rw
Φ̇ = 1

(2.1)
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Figure 1: A flow on a torus with a discontinuous jump. Points are identified across the jump (e.g.,
the black points on the magenta trajectory), and in the induced topology the white set is open.
The jump is a homeomorphism on the circle, so this topology glues the two circular faces together
one-to-one and continuously to create an unbroken torus on which flows are continuous.

In these equations, Φ ∈ T1 = [0, TI), I(·) is a piecewise-continuous function from T1 to R+

and hence a periodic current with period TI , and 0 < τ � 1. This model has been stud-
ied in [Alexander1990](in which only the w variable is forced), [Guckenheimer2006],
[Croisier2009], [Izhikevich2000], and [Coombes2000], to name a few; our analysis is
intended only to compare these results to the properties of ING oscillators.

2.2.1. The Breakup of the Invariant Torus. Though any system with a globally attracting
limit cycle is globally attracted to an invariant torus for sufficiently weak periodic forcing,
the strength of forcing required to break up the torus varies by system. One factor that can
reduce the requisite forcing strength necessary to break the torus is a separation of time
scales. This effect is apparent in the case of the forced relaxation oscillator.

Croiser et. al [Croisier2009] conduct a numerical study of the FN oscillator under forcing.
They find that interesting dynamics emerge at a forcing strength ε that decreases precip-
itously as τ → 0. These dynamics include the period-doubling of stable 1:1 phase-locked
orbits, and bistability between 1:1 and 2:1 phase-locked solutions, both for forcing periods
close to the system’s natural period. As discussed above, neither of these behaviors is pos-
sible if there exists a globally attracting invariant torus; therefore, their observations prove
that when τ is small, the attracting invariant torus breaks up at very small ε.
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Figure 2: The phase response curve (PRC) of the FN oscillator with small τ in response to two
different pulse strengths (both very weak), reproduced from Croisier et al. 2009 [Croisier2009].

2.2.2. Bistable Phase-Locking. Even when the forced FN oscillator possesses an invariant
torus, it still tends to support stable 1:1 phase-locking at two different phases. Croiser
et. al [Croisier2009] demonstrate by numerical simulation that when a FN oscillator
(with small, nonzero ε) is given pulsatile periodic forcing, the stable phase-locking tongue
has bistable regions for forcing periods immediately to the right and left of the natural
period.

Croisier et al. point out that the bistability is directly related to the fact that the phase-
response curve (PRC) makes two downward excursions from the zero line (see Figure 2).
Here, the phase response curve (PRC) is defined as a function from an oscillator’s phase at
the arrival of a temporally localized pulse to the resulting advance (or delay) in phase
[Winifree] [Ermentrout2002] [Canavier2012]. It can be used to produce a “phase-
resetting map” from the oscillator’s phase at one stimulus to its phase at the next:

φi+1 = φi + f(φi) + TI mod T0 (2.2)

where f(·) is the PRC, φ ∈ T1 = [0, T0) (see [Croisier2009]), and TI and T0 are the forcing
period and natural period as before. When the PRC crosses T0 − TI , the phase-resetting
map crosses the diagonal and phase-locking is possible; when this crossing is from above to
below, the phase-resetting map crosses from above the diagonal to below, so phase-locking
may be stable (as long as the slope of the phase-resetting map at the crossing is greater
than −1). The PRC for the FN oscillator is reproduced from [Croisier2009] in Figure 2.
Note its two downward excursions. If the forcing period is just above the natural period,
then T0 − TI is just below zero, and these downward excursions may cause the PRC to
cross T0 − TI downwards twice with shallow slopes, giving rise to two stably phase-locked
trajectories.

3. ING: Robust, Monostable Phase-Locking on an In-
variant Torus

Here we investigate the phase-locking properties of the forced ING mechanism.
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Figure 3: Schema of the ING circuit.

As we discuss above, our treatment of ING assumes a periodically-forced synchronous
population of I-cells in a cycle of creating and then slowly recovering from mutual inhibition.
The components of this system are:

• A fast voltage variable V (the shared membrane potential of the inhibitory popu-
lation) goes from excitable to oscillatory as drive passes above a threshold, causing
it to blow up (spike) and then reset.

• A slow inhibition variable s > 0 (the level of synaptic inhibition) that resets to a
higher value when the voltage variable spikes, and otherwise decays with time.

• A forcing phase variable Φ that advances steadily with time and may be either on
a circle or lifted to R (in which case we write Φ̄).

Like the forced relaxation oscillator, this system is characterized by a slow variable, a faster
variable, and a periodic forcing variable, and dynamics are characterized by gradual change
in the slow variable punctuated by sudden jumps in the fast variable. In its definition, this
system differs from the FN oscillator in two key respects:

• The slow variable has fast resets triggered by the faster variable, and the resetting
map induces a contraction in the slow direction. In this respect, it is like a relaxation
oscillator with a very fast right branch. (See [Somers1993] for an explanation of
how a difference between the speeds along the two branches of a forced relaxation
oscillator creates “compression” in the slow direction.)

• Excitation always pushes the system closer to a spike. This is possible because the
fast variable is circular, so it never has to reverse direction like the fast variable in
the FN oscillator.

These differences have important consequences for the phase-locking properties of the sys-
tem that distinguish it from a relaxation oscillator:

• The attracting invariant torus that exists for ε = 0 persists for strong forcing for a
broad range of parameters, precluding period-doubling and any other behavior that
cannot exist on the torus.
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• In general, when the forced ING oscillator phase-locks to a periodic pulse, only
one phase-locked trajectory is stable. (We prove this claim for forcing by square
pulses within a particular parameter regime described below, and we observe it in
simulation in a broader range of forcing scenarios.)

We study one instantiation of the forced ING oscillator described above, using the voltage
V of a QIF neuron [Latham2000] to model the voltage of the synchronous inhibitory
population and an exponentially decaying scalar si ∈ (0, 1] to model the slowly decaying
inhibition. We use the equations


V̇ = 1

τ (V 2 +G)

ṡ = − s
τs

Φ̇ = 1

(3.1)

where
G = b− gs+ εI(Φ).

is the net flux of current; g is the maximal conductance of the I-cell autapse; τs is the
decay time constant of inhibition; τ is the I-cell membrane time constant; and b is the
baseline level of tonic excitation of the I-cell. The forcing phase Φ ∈ [0, TI) is on T1, and
I(·) is a TI -periodic piecewise-continuous function representing the periodic drive to the
I-population. V resets to −∞ when it blows up to ∞, and s resets instantly to

ρ(s) = 1 + c(s− 1) (3.2)

when V blows up. We call this synaptic resetting rule ρ “linearly resetting synapses.”
We show in Appendix 6.1 that this synapse model approximates more realistic synapses
if the spikes that cause synaptic rise are narrow. Models in which synapses increase by a
fixed amount at every spike can also be reproduced in this framework by making g large
and c close to 1. Similar equations to ours were used to model forced gamma rhythms in
[Borgers2005].

We also assume that the sum of b and I(Φ) becomes sufficiently positive for long enough
each period that the forward flow from any initial state is eventually followed by another
spike, and that the next spike occurs within time C for some C < ∞. (The existence of
an upper bound C on inter-spike interval can be shown to follow from the first assumption
and the compactness of state space.)

We treat the synaptic current s as a directly injected current. We believe that under
most circumstances, introducing a synaptic reversal potential would not compromise our
qualitative results; however, that is outside the scope of this paper.

Additional Notation:

• When we want to consider a circular variable (e.g., Φ) in its lift to R, we use an
overbar (e.g., Φ̄).
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• We write Vt to refer to the value of V at time t. Given an ODE and a set of initial
conditions V0, s0,Φ0, we write Vt(V0, s0,Φ0) to refer to the value of V when the
system is initialized with these initial conditions and allowed to flow forward by
time t. We use st and Φt similarly.

3.1. Existence of a Globally Attracting Invariant Torus for Non-Small ε. Here we
discuss the broad conditions under which a periodically-forced ING system as described in
(3.1) possesses a globally attracting invariant torus.

In order to avoid the inconvenience of resetting membrane potentials at a spike, we switch
from a QIF neuron with voltage V to the equivalent theta neuron with phase θ, using the
change of variables presented in [Ermentrout1986]:

V = tan

(
θ

2

)
(3.3)

where θ ∈ T1 = [0, 2π). We can replace the first equation in (3.1) with

θ̇ =
1

τ
[1− cos(θ) + (1 + cos(θ))G] . (3.4)

In θ coordinates, the invariant manifold (when it exists) is a torus with one jump disconti-
nuity at θ = π corresponding to the instantaneous synaptic resetting event at each spike.
If each trajectory is connected across the jump by identifying the point (π, s,Φ) at the
left-hand limit of a spike time with (π, ρ(s),Φ) at the right-hand limit of the spike, then
the invariant set is a topological torus in phase space, as discussed in Section 2.1 and il-
lustrated in Figure 4. Importantly, though the vector field on this torus is not continuous
across θ = π, it points in the positive direction on either side of it, so trajectories have
unique continuations across the boundary and it is accurate to describe the invariant set as
a flow constrained to a torus [Alexander1990]. As discussed in Section 2.1, when an at-
tracting invariant torus exists, the long-term dynamics of the ING oscillator cannot include
multiple phase-locked trajectories with different locking ratios, and cannot period-double
as parameters change.

As with any limit-cycle oscillator, the invariant torus which exists for ε = 0 (no forcing)
persists for sufficiently small ε > 0. However, due to its distinctive structure, the ING
oscillator has a much broader regime throughout which its invariant torus provably persists.
First we show that

As discussed in Section 2.1, the existence of the attracting invariant torus is equivalent to
the existence of an attracting invariant circle for the map from the system state at one spike
to the next. We let R denote the map from the (s,Φ) state of the system at the right-hand
limit of a spike time at t = 0 to its (s,Φ) state at the right-hand limit of the next spike
time ts:
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Figure 4: Left: Trajectories of ING go to an invariant torus with a jump discontinuity at θ = π.
θ is represented by the angle around a ring in the x/y plane; s is represented by the length of a
vector extending perpendicularly out from this central ring; and Φ is represented by the angle of
this vector. around the circular cross-section of the torus. The large red circle is the set θ = π,
s = 1. Sixteen trajectories are initialized from this set, each at a different forcing phase. Four are
colored for visibility. Right: Under periodic forcing, some trajectories increase and then decrease
in the θ direction before spiking; ultimately, they cluster together towards a single trajectory on
the cyclinder, giving rise to stable phase-locking.

R : [0, 1]× T1 → [0, 1]× T1

(s0,Φ0)→ (sts ,Φts)

In the following, we assume ε = 1 because an assumption of weak forcing is not required.
We show that an attracting invariant circle exists for R (and hence an attracting broken
invariant torus exists for the dynamical system) when c = 0, when c is sufficiently small,
and when g is sufficiently large.

3.1.1. Invariant torus when c = 0. If c = 0 (synapses saturate fully at each spike), we can
immediately see that since ρ(s) = 1 for all s, trajectories reaching θ = π jump onto the
circle s = 1 in (s,Φ) space. This circle is clearly invariant and attracting under R, and
the flow from this circle forms an invariant surface in the full phase space. All we need
to show is that this surface is a torus when trajectories are identified across the jump; for
this, it is sufficient to show that when the circle s = 1 at θ = −π is followed along the
flow to the next spike and reset by ρ (i.e., subjected to the return map R), the result is an
orientation=preserving homeomorphism on the circle.

We let PT1 : T1 → T1 denote the restriction of R to the circle s = 1, which takes as
an argument an initial forcing phase Φ0 and returns the value of Φ at which a trajectory
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Figure 5: Two trajectories are initialized with s = 0, at phases Φ̄B0 > Φ̄A0 . The population phase θ
of trajectory B (red) is below that of trajectory A (blue), and cannot cross it because it is under
more inhibition. Therefore, trajectory A reaches a spike at an earlier forcing phase: Φ̄B1 > Φ̄A1 .

initialized at (−π, 1,Φ0) reaches its next spike. If we can show that PT1 is an orientation-
preserving homeomorphism on the circle, then after points are identified across the jump,
the forward flow from (−π, 1,Φ) back to itself traces out a torus.

Theorem 3.1.1. P is an orientation-preserving homeomorphism on the circle (−π, 1,Φ).

The proof below is illustrated in Figure 5.

Proof. Let θ̄ and Φ̄ denote the lifts of θ and Φ to R. Let P : R → R denote the map
PT1 for forcing phase lifted to R. Since P is a lift of the map PT1 to R, PT1 is an
orientation-preserving homeomorphism on T1 if and only if P is an orientation-preserving
homeomorphism on R.

Consider two trajectories, A and B, which spike at initial time t = 0 at forcing phases Φ̄A
0

and Φ̄B
0 , with Φ̄B

0 > Φ̄A
0 . We let the state at the right-hand limit of the A spike,

−π1
Φ̄A

0

,

flow forward to forcing phase Φ̄B
0 , where we will have θ̄A > −π and sA < 1. From this point
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forward, when the trajectories are at the same forcing phase, the inhibition on trajectory A
will be lower. From (3.4), we see that for fixed θ, θ̇ strictly increases as inhibition decreases,
so a trajectory under more inhibition can not cross from below to above a trajectory with
higher inhibition. From this point forward, θ̄B cannot cross θ̄A from below, and will stay
beneath it until trajectory A reaches another spike at some forcing phase Φ̄A

1 . Hence
trajectory b must reach a spike at some Φ̄B

1 > Φ̄A
1 .

By the preceding argument, P (the map from Φ̄A
0 to Φ̄A

1 described above) preserves order-
ing. It is continuous because it is a Poincare map on a continuous flow; it is therefore a
homeomorphism on R.

The map P is the lift of the map PT1 acting on T1. Since P is a periodic order-preserving
homeomorphism on R, PT1 from ΦA

0 to ΦA
1 must be an orientation-preserving homeomor-

phism on the circle.

�

As discussed above, this condition is sufficient to prove the existence of a broken invariant
torus that can be repaired by identifying points across the jump, and this set absorbs all
initial conditions in finite time. PT1 is the spike map discussed in Section 2.1, which takes
the forcing phase at the right-hand limit of one spike to the forcing phase at the right-hand
limit of the next. Once the system has reached a spike, it becomes constrained to the
invariant torus, and this spike map fully determines its dynamics.

This proof works because when all other things are equal, a system state with lower s reaches
a spike before a system state with higher s. Trajectory B, which spiked more recently than
trajectory A, must have a higher value of s at any given time, and therefore its next spike
must be later than the next spike of trajectory A. By contrast, a trajectory on the right
branch of the FN oscillator will reach a spike sooner if w is higher, whereas a trajectory on
the left branch will spike sooner if w is lower, so this proof does not apply.

3.1.2. Invariant torus for small c > 0. An attracting torus also exists in the case c > 0 as
long as trajectories contract together sufficiently strongly with time. One possible cause of
this contraction is the convergence of trajectories due to the resetting map ρ. When c = 0,
ρ (and hence the return map R) forces all spiking trajectories onto the circle s = 1; when
c is small, ρ (and hence R) pushes trajectories close to the circle s = 1, and as a result
the phase space contracts significantly at each application of the resetting map. Since the
net excitation G exceeds zero in bounded time, the time between spikes is bounded, and
this contraction occurs regularly; therefore, we expect it to lead to a steady contraction
of the whole phase space. In the tradition of contraction-mapping theorems, we expect a
strong contraction to lead to the existence of an invariant set, which in this case will be an
invariant circle under R (like the circle s = 1 in the c = 0 case) and a corresponding broken
invariant torus in the full phase space.
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Intuitively, it would make sense to apply Niel Fenichel’s result on the persistence of invariant
manifolds to show that the torus persists when c is perturbed away from zero; however,
Fenichel gives his result only for diffeomorphisms and continuous flows, whereas our flow
experiences discontinuities and our return map R is not a diffeomorphism for c = 0 (due to
the degeneracy of the map ρ in this case). In Appendix 6.2, we use a contraction-mapping
result taken from [Kolesov2003] and [shilnikov98] called the Annulus Principle to show
that for any set of system parameters, c > 0 may be chosen sufficiently small that there
still exists an attracting invariant circle for R and hence a broken attracting invariant torus
for the full system.

3.1.3. Invariant torus for large g. A second source of contraction in phase space of the ING
system is the convergence of trajectories under sustained inhibition. This second factor in
the creation of an invariant torus has been referred to in [diener85] and [dorea2009] as
“rivering” because many voltage trajectories converge tightly under sustained inhibition to
form a “river” of trajectories.

In the ING system, s and Φ trajectories evolve independently of θ: (st,Φt) = (s0e
− t
τs ,Φ0 +

t). When the parameters of the ING system force θ to remain sufficiently negative for a
sufficiently long time, rivering causes the θ coordinates of sets of trajectories on the same
(s,Φ) trajectory to converge into tight rivers. As a result, the time for any system state
(θ, s,Φ) to reach a spike comes to depend exclusively on s and Φ and becomes largely
independent of θ; equivalently, the next spike time comes to depend only on what (s,Φ)
trajectory the system joins at a spike, and becomes largely independent of the specific point
along that trajectory that the spike occurs. When c = 0, fully-resetting synapses create an
attracting invariant torus by causing the set of trajectories reaching a spike at the same
forcing phase Φ to converge onto the same trajectory; when strong rivering of θ trajectories
occurs, it creates an attracting invariant torus by causing the set of trajectories proceeding
from a spike along the same (s,Φ) trajectory to converge on the same trajectory.

For any one-dimensional ODE, we can define a quantitative measure of rivering. Consider
the (possibly nonautonomous) ODE v̇ = F (v, t). For two nearby initial conditions v∗0 and
v∗0 + ∆v0, we define ∆vt as the difference between the trajectories initialized at these two
points after time t. ∆vt evolves according the the linearization of the ODE about the
“base trajectory” v∗t : ∆v̇t = Fv(v

∗
t , t)∆vt. This linear ODE can be solved by ordinary

methods:

∆vt = ∆v0e
∫ t
0 Fv(v∗r ,r)dr.

We set κ = e
∫ ts
0 Fv(v∗t ,t)dt, where ts is the next spike time after t = 0. κ is a measure of

the strength of rivering between t = 0 and t = ts. If it is close to zero, nearby trajectories
converge almost completely; if it is near 1, nearby trajectories stay approximately the same
distance apart; if it is large, nearby trajectories diverge. κ is implicitly a function of the
initial condition v∗0.
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For the ING system described by (3.1), we can try to define κ for the membrane potential
variable V :

∆Vts = κ∆V0, where κ = e
∫ ts
0 2V ∗

t dt.

Unfortunately, by this definition the integral in κ explodes at both ends of the interval,
where V = ±∞. Fortunately, we can circumvent this problem by using the change of
variables from V to θ as described by (3.4) to define κ for the theta neuron phase θ:

∆θts = κ∆θ0, where κ = e
∫ ts
0 sin(θ∗t )(1−G∗

t )dt

where G∗t is the net current at time t along the base trajectory (θ∗t , s
∗
t ,Φ

∗
t ):

G∗t = b− gs∗t + I(Φ∗t ).

We can use a change of variables to fully exploit the contraction resulting from the rivering
of θ trajectories. We replace the coordinate Φ with φ = Φ + τs ln(s), and then define a
map R̃ analogous to R that takes the system state (s0, φ0) at the right-hand limit of a
spike at time 0 and returns the system state (sts , φts) at the right-hand limit of the next
spike:

R̃ : [0, 1]× T1 → [0, 1]× T1

(s0, φ0)→ (sts , φts) (3.5)

This new coordinate system is useful because all spikes occurring at the same value of
φ0 experience the same timecourse of s and Φ until the next spike, and therefore tend to
river together. Thus, though R(s0,Φ0) may depend strongly on both s0 and Φ0, R̃(s0, φ0)
depends mainly on φ0 and therefore contracts trajectories together strongly in the s direc-
tion.

In Appendix 6.2, we show that by choosing the inhibitory conductance parameter g suf-
ficiently large and bounding the allowable magnitude of the forcing current I(·), we can
guarantee that κ is small (while other important quantities remain bounded from below).
Using the contraction-mapping result described above, we show that if κ is sufficiently small
(relative to these other bounded quantities), then R̃ possesses an attracting invariant torus,
and hence a broken attracting invariant torus exists in the full space.

Remark 3.1.1. In the proof in Appendix 6.2, a second type of convergence of trajectories
also occurs for large g: since large g prevents spiking for a long time, all trajectories reach
spikes with s close to zero. A measure of convergence of s trajectories due to decay of inhi-
bition is e−

ts
τs . In our proof, we show that like κ, this quantity also becomes arbitrarily small

with large g, and also contributes to the contraction of phase space that causes the system
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to meet the conditions of the Annulus Principle and converge on an attracting invariant
manifold.

3.2. Monostability. Here we use the inter-spike interval function Ψ to study the stability
of ING phase-locking, and prove that phase-locking to square pulses is monostable.

The bistability of the FN oscillator discussed in 2.2.2 is related to its constraint to a plane:
excitatory forcing pushes the oscillation phase forward when v is rising but retards the
phase when v is falling. In our ING system, excitatory forcing can only cause trajectories
to reach spikes earlier. This is possible because the voltage variable lives on a circle, and
therefore can continue to move in the same direction throughout the ING period. The
uniformity of the ING oscillator’s response to excitatory pulses suggests that ING might
not lend itself to bistability in the same way as the FN oscillator.

We first consider the case of the forced ING system modeled by the equations (3.1) with
c = 0, as discussed in section 3.1.1. We may study the number of stably phase-locked states
using the spike map P (from forcing phase at one spike to forcing phase at the next, as
defined in section 3.1.1) and its action on Φ̄0 ∈ R: where P intersects the diagonal line
P(Φ̄0) = Φ̄0 +TI , phase-locking occurs. Equivalently, we may study the inter-spike interval
(ISI) function, defined as

Ψ(Φ0) = P(Φ̄0)− Φ̄0. (3.6)

Phases Φ0 where Ψ crosses the line Ψ(Φ0) = TI are locking phases. By the basic theory
of iterated maps (explored and explained more thoroughly in Appendix 6.6), only phases
where the crossing is from top to bottom may be stable. In order to show that the ING
oscillator may only have one stably phase-locked orbit in response to a particular forcing
input, it is sufficient to show that Ψ can only cross TI in the downward direction once, or
equivalently that it can only cross TI twice.

If we assume that τ is sufficiently small that spikes occur immediately as soon as G > 0,
we can analytically describe Ψ(Φ0) (and illustrate it; see Figure 6). During a pulse, G can
only exceed zero if the previous spike took place sufficiently long ago. If the previous spike
was too recent, the pulse arrives under slightly too much inhibition to produce a positive
net current. When this occurs, the next spike time jumps ahead to the next time the net
current is positive, which may be at the next pulse or to the time a spike would naturally
occur unforced (after the natural period of oscillation).

Thus, for small τ , Ψ(Φ0) a characteristic shape, represented in Figure 6, top. When Φ0

is in the range marked by purple arrows, the next spike is evoked by the next pulse. In
this range, the next spike time does not change with Φ0, so the interspike interval shrinks
steadily as Φ0 increases and d

dΦ0
Ψ = −1. At some initial forcing phase, the next pulse

occurs slightly too early to evoke a spike, and here Ψ jumps up sharply. In the range
marked by blue arrows, the next spike occurs after the natural oscillator period T0, before
the following pulse. In this range, the ISI is independent of the initial forcing phase Φ0,
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Figure 6: Top: The interspike interval function Ψ as a function of initial forcing phase Φ0 at a
spike., for the singular limit case τ → 0. At the phases where Ψ(Φ0) crosses TI (the green line),
phase locking is possible. Bottom: Ψ vs. Φ0 for 0 < τ � 1. Note the similarity to the singular
limit case. We prove that under square-pulse forcing, the direction of Ψ′ may only change twice (as
it does above), and that therefore Ψ may cross TI only two times. Only one of the two crossings may
be from top to bottom, and this is the requirement for stability, so only one stable phase-locking
phase may exist.
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so d
dΦ0

Ψ = 0. Beyond this range, the following pulse occurs before T0 has passed since the
last spike, so this pulse evokes the next spike and d

dΦ0
Ψ = −1 again.

When Ψ takes this shape, it can cross the horizontal line Ψ(Φ0) = TI in the downwards
direction no more than once in each forcing period. Only at this crossing point can stable
phase-locking occur, so phase-locking (if it occurs at all) must be monostable.

Remark 3.2.1. We make a much more thorough study of the limiting case of small τ in
[[[COMPANION PAPER]]].

When τ is not vanishingly small, the shape of Ψ(Φ0) is a smoother approximation of this
shape that still has only one peak and one trough (see Figure 6, bottom), so we still expect
it to cross Ψ(Φ0) = TI in the downward direction only once.

However, we seek a more rigorous proof of monostability. It is difficult or impossible to
write an explicit expression for Ψ, but solving a linear ODE allows us to write an expression
for Ψ′(Φ). We do so in Appendix 6.6, and use it to study the number of stably locked states.
We prove that in the case of square pulses, the ISI function on the circle can cross TI from
above only once, proving the monostability of 1 : 1 phase-locking in response to square-
wave forcing. We also extend this result from the c = 0 case to the case of sufficiently small
c > 0.

Empirical observation of simulations suggests that phase locking to non-square periodic
pulses is also generally monostable. A proof for non-square pulses would be more difficult,
but might follow along similar lines.

4. PING: A Perturbation of ING

Pyramidal-Interneuronal Network Gamma (“PING”) is the name given to gamma rhythms
produced by a process requiring both excitatory and inhibitory neuronal populations. In
the unforced PING model, a gamma rhythm is again paced by the synchronous firing of
interneurons and the subsequent decay of inhibition; however, the first cells to emerge from
inhibition are excitatory pyramidal cells. It is the firing of these cells that triggers the next
inhibitory volley, rather than the gradual emergence of the I-cells from inhibition. Each
cell may fire once each time the inhibition is sufficiently low (“strong PING”), or may fire
only on some cycles, while other cells trigger inhibitory volleys on the other cycles (“weak
PING”).

PING rhythms may be forced by signals to the I-cell or E-cell populations, or by some
combination. We focus on the case in which the E-cell population is forced periodically.
(We discuss whether these methods may be applied to the general case of forcing to both
populations below.) We point out a direct correspondence between models of PING and
ING when the rise time of the inhibitory population is small. We then use this correspon-
dence to prove that a periodically-forced PING model with a small inhibitory membrane
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Figure 7: Schema of the PING circuit.

time constant possesses a broken attracting invariant torus. As discussed previously, this
shows that forced PING with fast I-cells does not period-double or support shared stability
between different types of phase-locking.

To create a simple model of forced PING, we add an additional cell population and an
additional synaptic variable to the ING model in (3.1), and again switch from QIF neurons
to theta neurons using equation (3.3) to change variables:



τiθ̇
i = 1− cos(θi) + (1 + cos(θi))CGi

τeθ̇
e = 1− cos(θe) + (1 + cos(θe))Ge

ṡi = −si/τsi
ṡe = −se/τse
Φ̇ = 1

(4.1)

with Ge = be − giesi + εI(Φ) and Gi = bi − giisi + geis
e. (We put i and e in superscript

for variables that evolve with time and will therefore carry a t subscript.) The inhibitory
synaptic activity variable si ∈ [0, 1] resets to ρi(si) = 1 + ci(s

i − 1) for some ci ∈ [0, 1) in
the right-hand limit when θi = π; the excitatory synaptic activity variable se ∈ [0, 1] resets
to ρe(se) = 1 + ce(s

e − 1) for some ce ∈ [0, 1) in the right-hand limit when θe = π. The
cell phase variables θe, θi ∈ [0, 2π) and the forcing phase Φ ∈ [0, TI) are on circles. I(·) is a
TI -periodic input current to the E-cell; gei, gie, and gii are synaptic gating variables; τi and
τe are the membrane time constants of the two populations; be and bi are the baseline levels
of tonic excitation to the two populations; and τsi and τse are the decay time constants of
inhibition and excitation, respectively.

We have also introduced a parameter C with no analogue in the ING model. This parameter
allows us to scale up and down the I-population’s synaptic currents together. When C is
large, both the excitatory and inhibitory influences on the I-population are very strong, but
their magnitudes relative to each other are not affected by C.

We study parameter regimes in which the model gives rise to rhythms by the following
process:

• An E-cell volley occurs.
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• Immediately afterwards, an I-cell volley follows.

• The I-cell population quickly rivers to an attracting trajectory.

• As inhibition decays, the forcing and lowered inhibition eventually trigger an E-cell
volley, etc.

In order to restrict our scope to such models, we make the assumptions:

(1) There exists KIE < 0 such that Gi < KIE between an I-spike and an E-spike;
thus, once the I-cell has spiked, it cannot spike again until the next E-spike. This
assumption can be fulfilled by choosing parameters such that bi < 0 and such that
inhibition always outweighs excitation after both have reset.

(2) After an E-spike, an I-spike occurs before the next E-spike. This assumption can
be fulfilled by choosing gei large enough that after an E-spike, θi rises faster than
θe.

(3) There exists a KEI > 0 such that Gi > KEI for time πτi
KEI

after any E-spike;
thus, an I-spike necessarily occurs within a certain bounded delay after an E-
spike. The natural period of the I-population under constant drive CKEI is πτi√

CKEI

[izhikevichDNS]; this is the time for θi to rise from −π to π, and a more advanced
initial phase or additional current can only shorten this rise time, so this quantity
serves as an upper bound on E-spike-to-I-spike lag. This assumption may be met by
a combination of sufficiently large gei, sufficiently small ce (such that after a spike,
geis

e is sufficiently large to overwhelm the other terms in Gi) and sufficiently large
τe (such that geise stays sufficiently large until an I-spike occurs).

4.1. Reduction to ING for Small θi Rise Time. If we add one additional assumption
to this list, we can create a direct correspondence between the PING and ING models:

(4) C is sufficiently large that the rise time TEI the I-population phase between and
E-spike and an I-spike is vanishingly small compared to τe, τsi , τse , and TI .

This assumption is justified by several observations. Levy et. al [Levy2012] observed in
slice that the EPSPs evoked via E-I connections (between pyramidal cells and presumed
fast-spiking interneurons, before adaptation) were twice as strong as the IPSPs evoked via
I-E connections and three times as strong as the EPSPs evoked via E-E connection. Atallah
and Scanziani observed in vivo that the delay time between E-volleys and I-volleys during
PING is around 2ms, compared to a gamma period ranging from 12 to 45ms [Atallah2009];
in their models, this short lag time is created partially by strong E-to-I connections.

When the I-cell rise time TEI separating the E-spikes and the subsequent I-spikes is vanish-
ingly small on the time scale of the rest of the model, the PING process become indistin-
guishable from ING: it is as if the E-population is immediately inhibiting itself immediately
with every spike. In this case, we know from section 3.1.3 that when ci is sufficiently small
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or gie is sufficiently large, the subsystem consisting of θe, si, and Φ asymptotically ap-
proaches an invariant torus with a jump discontinuity, and the flow on that manifold can
be converted into a flow on an unbroken torus by identifying points across the jump.

Intuition suggests that this invariant torus should correspond with an invariant torus in
all five dimensions, and furthermore that the torus and the resulting limitation to periodic
and quasiperiodic behavior should persist when the scaling factor C of the I-population
synapses is large but finite (and thus the I-cell rise time separating the E-volley and the
I-volley is small but nonzero on the other time scales). In Appendix 6.7, we show that in
appropriate parameter regimes and for sufficiently large C (i.e. sufficiently strong E-I and
I-I synapses to the I cell), the map from the system state at one I-spike to the system state
at the next depends only weakly and continuously on the two new variables, and therefore
may be considered a small, continuous perturbation of the map R from the ING case. We
extend the Annulus Principle used to prove the existence of an invariant torus for the ING
system, first to show that a torus persists when the variable se is introduced as long as the
decay and reset of se induces sufficient contraction, and then again to prove that a torus
persists when θi is introduced as long as C is sufficiently large.

It is important to note that when such an invariant torus exists, the map from one I-
spike time to the next asymptotically approaches a circle, so on the surface of the torus
that map is one-dimensional. Thus, even for this high-dimensional system, there is still a
one-dimensional map from one state to the next that is valid after a transient. It is not
guaranteed that this map is well-defined as a map from the forcing phase at an I-spike to
the forcing phase at the next; but if the invariant circle at θi = π is a graph over Φ (and
hence any point on it can be uniquely identified by a single Φ coordinate), as seems to be
the case in simulation, this map can indeed be expressed as a map from Φ at one I-spike
to Φ at the next.

Remark 4.1.1. We do not actually need and arbitrarily short θi rise time to draw these
conclusions. If we make the assumptions that the rise time of θi after an E-spike is constant
(an assumption made for analytical purposes by [Malerba2013] and others) and that ci = 0
(saturating inhibitory synapses), then the dynamics depend only on θe, si, and Φ, and a
similar proof to the one outlined in 3.1.1 may be used to demonstrate that the spike map is
a homeomorphism and prove the existence of an attracting invariant torus.

5. Discussion

5.1. Major Results. The ING network’s relative simplicity and its fundamental differ-
ences from other studied oscillators make it interesting from a purely theoretical perspective:
it exemplifies an oscillatory mechanism that is fundamentally different from other archetyp-
ical oscillators. This work investigates the dynamics of the simple gamma-rhythmic ING
circuit under periodic forcing and contrasts them against those of relaxation oscillators. It
identifies two key properties of the ING circuit:
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• If synapses saturate sufficiently at each spike volley and/or parameters allow for
sufficient rivering of voltage trajectories as inhibition decays, then no matter the
forcing strength, the periodically forced ING circuit possesses an attracting invariant
torus. As a result, it may achieve only periodic and quasiperiodic dynamics, to
the exclusion of period-doubling, coexistence of 1:1 and 2:1 orbits, and any other
behaviors impossible on the two-torus. We find that this property is shared by the
PING oscillator if the rise time of the inhibitory population is small.

• In the restricted case of saturating synapses and square forcing pulses, the ING
circuit can possess only one stable, phase-locked orbit at a time. Phase-locking is
also monostable for any pulse shape when the membrane time constant is sufficiently
small to make the ISI function take on a shape similar to its shape in the limit as
the membrane time constant goes to zero (see Figure 6).

Both of these properties are not shared by the forced relaxation oscillator, which has regimes
of period doubling and bistability. The differences can be traced back to the ING oscillator’s
rapidly-resetting, slowly-decaying feedback inhibition, and the unidirectional influence of
decreasing inhibition and excitatory forcing made possible by the ING oscillator’s circular
(rather than linear) fast variable.

In our models, we have modeled fast-spiking interneurons with theta neurons. This simpli-
fication is not completely justified: fast-spiking neurons have been observed to show type-2
rather than type-1 excitability, i.e. they do not initiate spiking by a saddle-node bifurcation
like the theta neuron but instead by a Hopf bifurcation. Consistent with this result is the
observation that fast-spiking neurons resonate about their resting voltages at slow-gamma-
like frequencies. Resonance may compromise the validity of our ING results. In particular,
it may not always be the case that the spike map is monotonic: earlier or later spike timing
may determine whether input pulses align or fail to align with periods of increased excitabil-
ity, significantly advancing or delaying the next spike. However, preliminary results show
that resonance at or near the spiking frequency does not lead to nonmonotonicity of the
spike map. Furthermore, in our PING model, our results depend on the E-population being
type-1 excitable but do not depend strongly on the excitability type of the I-population as
long as they can respond quickly to strong excitatory input.

One major assumption in our models was that each population of cells fires synchronously
or not at all. It has repeatedly been observed that during some episodes of PING (dubbed
“sparse” or “weak” PING), only a fraction of the E-cells fire on each cycle [Buhl1998]
[Burchell1998] [Fisahn1998]. However, our work does not rest heavily on the assumption
of synchronous E-cells as long as the I-volley is triggered all at once, creating a sudden onset
followed by a slow decay of inhibition. We believe that with a reasonable set of assumptions,
sparse PING could be shown to obey the same dynamic restrictions as strong PING.

It has also been observed that some I-cells may fire on only a fraction of cycles, and that
different amounts of inhibition may be recruited on each gamma cycle [Atallah2009]. The
effects of variable inhibitory recruitment on phase-locking has been studied in [Serenevy].
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Though the authors find that this effect makes phase-locking more robust, their results also
show that a volley occurring at a later phase of the periodic drive may be followed by an
earlier second volley due to less inhibitory recruitment, creating a non-monotonic spike map
and qualitatively different behavior than the dynamics described here. We hypothesize that
in some parameter regimes, this effect leads to chaos.

Our brief discussion of PING makes two additional major assumptions: the rise time of
the inhibitory population following an E-spike must be small, and the forcing must be
delivered only to pyramidal cells. The first assumption has strong basis in experimental
findings: Atallah and Scanziani observe that this lag time is about 2ms in vivo. This may
be due partially to low membrane time constants. Indeed, fast-spiking interneurons do have
lower membrane time constants than most other cortical cells [Pike2000]. It also may be
due to the strong E-to-I connectivity in these networks.

The second assumption is a caricature: there is reason to believe that fast-spiking interneu-
rons involved in PING do receive input from other cortical areas, as well as evidence that
forcing these interneurons can entrain a gamma rhythm [Cardin2009]. If we continue to
assume that the E- and I-populations are each firing synchronously, we do not expect this
complication to significantly impact our conclusions. If excitatory forcing is delivered to the
I-population in addition to the E-population, inhibitory spike volleys may be initiated with
or without excitatory participation; but in either case, these volleys are created by forcing
that pushes them above decaying inhibition, and cause the inhibition to reset quickly, wip-
ing out most history dependence. These dynamics are not significantly different than the
dynamics when periodic forcing is delivered exclusively to pyramids.

5.2. Relationship to Other Work. To our knowledge, our work is the first to directly
compare the network gamma mechanism to the relaxation oscillator, and the first to identify
dynamic constraint inherent to the network gamma mechanism under forcing.

In an effort to answer questions about schizophrenia, Vierling-Claassen and Kopell [dorea2009]
study periodically forced PING circuits using a model very similar to ours. They create a
one-dimensional map similar to our spike map using the assumption that the various pos-
sible trajectories of both cells river together completely under inhibition and that synapses
saturate at every spike. In this manuscript we show that in the case of ING, either one of
those assumptions or the combination of partial rivering and partial saturation is sufficient
to create an invariant 2-torus, allowing us to define a one-dimensional map describing the
asymptotic dynamics. We also show that the same is true of PING if the inhibitory mem-
brane time constant τi is small. Their work is aimed at explaining a specific observation
in schizophrenic patients, and assume a specific profile of periodic forcing; ours is aimed
at deepening our understanding of any instance of forced network gamma with analytical
results valid for any periodic input.

The work of Serenevy and Kopell [Serenevy] is closely related to ours. It studies forced
ING using maps from one spike volley to the next, and demonstrates that variable I-cell
participation adds robustness to phase locking. Their work assumes complete rivering of
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trajectories in order to define a one-dimensional map description of the interesting phase-
locking dynamics that may result from variable participation. Our work applies the lan-
guage of invariant manifolds and assumes a fixed population of participating cells, allowing
us to generalize and relax the assumption of complete rivering as discussed above.

Various authors, including Ermentrout et al. [Ermentrout2001] and Kilpatrick and Er-
mentrout [Kilpatrick2011] have studied QIF neurons with adaptation in coupled and
forced settings. The QIF-with-adaptation models they use are very similar to our model
of ING: instead of decaying and resetting inhibition, they have a decaying and resetting
adaptive current. Our work differs from theirs in at least two important ways. First, other
work generally uses PRC’s that assume weak coupling/forcing or pulsatile forcing; here, we
prove the existence of invariant tori given no assumptions about the forcing signal except
Lipschitz continuity, and prove monostability assuming forcing by square pulses of finite
length. Second, we generalize our result to PING, an interaction of two cell populations.
To our knowledge, we are the first to draw a connection between the QIF-with-adaptation
model (our ING model) and the PING circuit.

Engelbrecht and Mirollo [Engelbrecht2012] also study the existence of attracting invari-
ant manifolds for neuronal systems. In their study of the interaction between periodic
forcing and noise in individual neurons, they find that even high-dimensional neuron mod-
els asymptote to two-dimensional surfaces (like our ING and PING models), allowing them
to describe a forced Hodgkin-Huxley neuron with a one-dimensional spike map. They ex-
plain this effect as the persistence of an invariant torus from the unforced oscillatory state,
but they do not further examine the factors that allow this torus to persist.

Burden et al. [Burden2011] study the existence of attracting invariant manifolds for
hybrid dynamical systems like the ones we study here. They prove that if a resetting
map in a hybrid system with a periodic orbit is of rank r, then the periodic orbit lies
in a r + 1-dimensional manifold that attracts all initial conditions in finite time. When
c = 0 in our ING model, the resetting map is rank 1, and we prove that this implies the
existence of a two-dimensional invariant manifold. In later unpublished work, they also
discuss exponentially attracting manifolds in hyperbolic systems. However, all of the work
done by Burden et al. assumes the existence of a periodic orbit, whereas our work proves
the existence of invariant tori even if no periodic orbit exists.

Rajan et al. [Rajan2010] provide analytical results indicating that strong ongoing input to
a chaotic neural network suppresses chaotic behavior. Though their results are for firing rate
models of random networks and do not relate to rhythmic behavior, their results tell a story
very similar to ours: a driven network displays a limited, non-chaotic repertoire of dynamics,
and can therefore respond reliably and reproducibly to an input. Any network receiving
ongoing temporally-varying input must strike a balance between its intrinsic dynamics and
its response to the input. Rhythms may prove to play an important role in adjusting and
maintaining this balance.
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5.3. Implications for Communication Through Coherence. The properties of gamma
rhythms under forcing are particularly interesting in the context of the Communication-
Through-Coherence (CTC) hypothesis [Womelsdorf2007b]. Briefly, this hypothesis states
that oscillations (and in particular gamma rhythms) in neuronal populations create periodic
windows during which they are susceptible to input, alternating with windows of insensi-
tivity to input. For two oscillating populations to effectively communicate, the output from
one oscillation must be phase-aligned with the susceptible windows of the other.

For CTC to operate, it is necessary (though not sufficient) that a mechanism exist for
reliably establishing a consistent phase relationship between the rhythms of the “send-
ing” and “receiving” populations. Several studies have demonstrated that gamma rhythms
in the brain cannot be relied upon to sustain a metronome-like periodicity [Burns2011]
[Xing2012], so any phase alignment between gamma rhythms must actively maintained
[Nikolic2013]. One straightforward method of creating and maintaining such a phase re-
lationship is to allow the rhythmicity of the sending population’s output to entrain the
receiving population directly. But entrainment is not sufficient: the phase relationship be-
tween the two populations must be stable and predictable. As is demonstrated by the case
of the FN system, an oscillator given excitatory forcing of moderate strength at a period
close to its natural period may align differently with alternate forcing cycles due to period-
doubling; or its alignment with the forcing may depend strongly on initial conditions due to
bi-stability of phase-locked orbits. The properties of ING identified above guarantee that
neither of these behaviors may interfere with the phase alignment of the entrained receiving
population, facilitating CTC.

We have proven that phase-locking occurs with a specific, reliable phase relationship to
the forcing; but we have not specified what phase relationship. This topic is explored in
depth in [[[COMPANION PAPER]]], where it is shown that volleys in the gamma circuit
generally follow input pulses with short delay. This result places gamma rhythms in a
very specific position among the set of all possible oscillators, which may entrain to any
phase relationship with periodic forcing. The specific phase relationship created by network
gamma rhythms under forcing is optimal for CTC with these networks: when forcing pulses
(which presumably also encode information) reach the receiving population, it has been
nearly a full gamma period since the last spike volley, so inhibition is low and cells can
readily fire in response. In [[[COMPANION PAPER]]], it is also shown that when two
gamma circuits are mutually coupled and phase-locking occurs, a phase relationship is
created that is optimal for unidirectional transmission of information from the more driven
population to the less driven one.

The techniques used here all assume that Φ ∈ T1, i.e., forcing is periodic. However, with
almost exactly the same methods, we could study forcing by N periodic signals of different
periods by considering ~Φ ∈ TN = [0, TI,1)× ...× [0, TI,N ) (and setting ~̇Φ to a vector of ones).
A return map could be defined for this system that took the state (s, ~Φ) at one spike to the
state at the next; an attracting invariant torus for this map that could be written as a graph
of s over ~Φ would allow us to study the asymptotically stable dynamics of the system as the
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dynamics of a highly constrained map on TN . This method could answer questions about
when the system could phase-lock to one periodic signal without interference by others, as
discussed and studied through simulation in [Christoph2008], and potentially reveal the
importance of the network gamma mechanism in selective communication through phase
locking.

5.4. Broader Implications. The ING/PING mechanism is interesting outside the context
of gamma rhythms due to its resemblance to other rhythmic processes across the nervous
system. Some bursting mechanisms may be described by a process of overcoming a threshold
that decays slowly and resets quickly. For instance, the high-threshold bursting of thalamic
relay neurons implicated in alpha rhythms is characterized by the slow activation of h-type
cation channel while the cell rests at low voltage, followed by its rapid inactivation during
a burst of spikes. As the h-current activates, it requires less excitation to evoke a burst.
The ING circuit as defined here might serve as a first approximation of this process, with s
replaced by the activation of the h-current and spiking events replaced by bursting events.
To the extent that such a model accurately describes the generation of a rhythm, this
rhythm may be expected to share the distinctive properties of ING under forcing.

Though the systems treated here are low-dimensional for analytical tractability, the ideas
and techniques presented apply equally to higher dimensional systems, e.g. a gamma
rhythm generated by Hodgkin-Huxley neurons or by populations that are not completely
synchronous. In particular, if all of the variables in a system approach a fixed point that
varies slowly with the decay of a single slow variable and persists for sufficient time, the
rivering effect will create a strong contraction in phase space. As discussed briefly in Section
3.1.3, this effect may occur when fast variables describing the cell state converge during the
slow decay of inhibition, or when synapses rise rapidly towards saturation during a spike.
We show here that variational equations may be used to find conditions under which rivering
induces sufficient contraction in state space to force the existence of an invariant manifold.
If this rivering occurs under inhibition that strictly decays, spikes occurring later relative
to the forcing signal remain under greater inhibition until the next spike, and are therefore
followed by a later spike (as discussed in Section ??). We expect that such a monotonic
relationship combined with strong rivering will force higher dimensional systems onto an
invariant torus as well.

In many neural processes, individual spikes or spike volleys form natural landmarks in the
dynamics, so maps from one spiking event to the next are a convenient framework in which
to study neural dynamics. The framework of invariant manifolds significantly extends the
applicability of spike maps. A map from the time or forcing phase of one spiking event to
the time or forcing phase at the next is only well-defined if the system’s state at a spike
can be completely specified by a single variable, so such a map can only be defined for a
system that is effectively two-dimensional. However, even a high-dimensional system may
become effectively two-dimensional due to contraction onto an invariant 2-torus. Similarly,
the map from the state at one spike to the state at the next may be reduced to a second-
or third-order spike map (a map from two or three variables at one spike to the same
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variables at the next) if the system converges onto a three- or four-dimensional manifold,
respectively.

Conversely, maps from one spike to the next may be used to prove the existence of attracting
manifolds of the full system, as we have done here. The search for low-dimensional activity
patterns and their causes in the brain is ultimately a search for low-dimensional attracting
invariant manifolds in large state-spaces; the techniques we have presented here may prove
valuable to that search.

6. Appendix

6.1. Derivation of linearly-resetting synapses. Here we derive our instantaneous synap-
tic resetting rule ρ(s) = 1+c(s−1) from a dynamic model of synaptic rise. Using a standard
model of synaptic rise we write:


τ θ̇ = 1− cos(θ) + (1 + cos(θ))G

ṡ = − 1
τs
s+ 1

τr
h
γχ[π−γ,π](θ)(1− s)

Φ̇ = 1

(6.1)

with
G = b− gs+ εI(Φ).

.

where χ[π−γ,π] is the characteristic function that is one on [π − γ, π] and zero elsewhere.
As θ passes through an interval of width γ just before θ = π, inhibitory transmitters are
present in the synapse at concentration h

γ , causing s to increase towards 1. The rest of
the model is the same as (3.1). We set ε = 1 because this result does not depend on weak
forcing.

We approximate the effect of a spike on s by assuming that γ � 2π, γτrh � τs, and γτ � 1.
During the interval of synaptic rise, our approximations give us θ ≈ π and


θ̇ ≈ 1

τ (1− cos(π) + (1 + cos(π))G) = 2
τ

ṡ = − 1
τs
s+ 1

τr
h
γ (1− s) ≈ h

γτr
(1− s)

Φ̇ = 1

(6.2)

We let ti denote the time that θti = −π − γ, and we let tf denote the time that θtf = −π.
Between ti and tf , the term 1

τr
h
γχ[π−γ,π](θ)(1− s) in (6.1) is large. We write

tf − ti =

∫ tf

ti
dt
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and changing variables from t to θ, we can write

tf − ti =

∫ π

π−γ

1
dθ
dt

dθ.

Using the approximation for θ̇ from (6.2), we have

tf − ti ≈
∫ π

π−γ

1
2
τ

dθ

≈γτ
2
� 1 (6.3)

Between tf and ti, we have the linear differential equation:

ṡ ≈ h

γτr
(1− s)

which is solved by
st ≈ 1 + (sti − 1)e

− h
γτr

(t−ti)

So we can solve for for stf in terms of sti :

stf ≈1 + (sti − 1)e
− h
γτr

(tf−ti) (6.4)

Substituting from (6.3),

≈1 + (sti − 1)e
− h
γτr

γτ
2

=1 + (sti − 1)e−
hτ
2τr

=1 + c(sti − 1)

where c = e−
hτ
2τr is in the interval [0, 1]. Thus, when a spike occurs at time t, these fast

dynamics induce the “reset” map ρ from s just before the spike to s just afterwards:

stf = ρ(st−) = 1 + c(sti − 1) (6.5)

at each spike (θ = π), where c = e−
hτ
2τr . Since the duration of this reset is very short

(see (6.3)), we replace sti with st− and stf with st, where t− and t denote the left- and
right-hand limits of a spike time t. We have now reproduced the reset rule described in
(3.2).

6.2. Invariant Torus in the ING Model, General Case. Here we find a sufficient
condition for the existence of an attracting invariant 2-dimensional torus in the phase space
of the ING model (3.1) in terms of integrals over the set of possible inter-spike trajecto-
ries.

Instantaneously resetting synapses helpfully lower the dimensionality of the system; how-
ever, because of them we cannot directly apply results from the study of continuous ODEs.
Instead, we study a transverse section of the system at θ = π and the associated Poincare
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mapping R from the section to itself. Since we are unable to solve the ODEs, we cannot
write an explicit expression for this map. We can, however, solve the associated variational
equations. These are defined as the linearization of the ODE about a trajectory, and de-
scribe the flow of small variations in state. We use these solutions to estimate the rates
of contraction of trajectories. If this contraction is sufficient, a contraction-mapping result
guarantees the existence of an attracting manifold.

6.2.1. Proof Outline.

(1) We solve the variational equations of the ODE in order to describe the transforma-
tion in variations of state from one spike time to the next.

(2) Combining our solution with a mapping describing the transformation of a variation
as it reaches the instantaneous reset, we write an explicit expression for the Jacobian
DR of R.

(3) We change to an appropriate set of coordinates and restrict our domain to an
appropriate annulus.

(4) We apply the “Annulus Principle,” taken from [Kolesov2003] and [shilnikov98],
to establish conditions under which the return map induces a sufficiently strong con-
traction in an appropriate direction on the annulus that it must have an attracting
invariant torus.

(5) We show by numerical methods that these conditions are met robustly for a range
of parameter values.

(6) We show that for a fixed parameter set not including c, the conditions established
above are met for sufficiently small c > 0.

(7) We show that for a fixed parameter set not including g, the conditions established
above are met for sufficiently large g.

6.2.2. Theorem Used. First we present the major theorem we will utilize in our proof.

Theorem 6.2.1 (Annulus Principle). Let us consider a diffeomorphism T :

r2 =f(r1, x1) (6.6)
x2 =x1 + F0(r1, x1) = F (r1, x1) (6.7)

where r1, r2 ∈ Rn, x1, x2 ∈ Tm, n ≥ 1,m ≥ 1, and the smooth functions f and F are
2π-periodic with respect to x1.

Let K be an annulus defined by K = {(r, x) s.t. r ∈ [δ1, δ2], x ∈ Tm}.

Let ‖f‖o denote sup
(r,x)∈K

‖f(r, x)‖, where ‖·‖ is the standard Euclidean norm.

If the following conditions are met:
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(1) T maps K into itself.

(2) ‖∂f∂r ‖o < 1 for any fixed x1.

(3) F is a diffeomorphism for any fixed r1.

(4) ‖
(
∂F
∂x

)−1‖o · ‖∂f∂r ‖o + 2

√
‖
(
∂F
∂x

)−1‖o · ‖∂F∂r ‖o · ‖
∂f
∂x

(
∂F
∂x

)−1‖o < 1.

Then T posseses an m-dimensional invariant torus in K which contains all ω-limit points
of all positive semi-trajectories in K. The torus is defined by the graph s = h∗(x) where h∗
is a C 1-smooth 2π-periodic function.

6.2.3. Definitions and Notation. Given the model (3.1) with phase coordinate defined in
(3.4), we set ε = 1 as in the previous appendix:


τ θ̇ = 1− cos(θ) + (1 + cos(θ))G

ṡ = − s
τs

Φ̇ = 1

(6.8)

where
G = b− gs+ I(Φ).

We study the trajectory from one spike to the next. We henceforth call the initial spike
time 0 and the next spike time ts. By default, states are specified at the right-hand limits
(r.h.l.) of these times; we use the additional subscript (−) to denote values at the left-hand
limits so that we can distinguish values of s before and after the instantaneous reset. As
we have previously, we use st to refer to the value of s at time t.

We define

R : T1 × [0, 1]× T1 →T1 × [0, 1]× T1 (6.9)(
s0

Φ0

)
→
(
sts
Φts

)
to be the mapping from the system state at the right-hand limit of a spike at time 0 to the
same values at the right-hand limit of the next spike, at time ts. R exists provided that
spiking continues indefinitely, which is the case as long as b > 0. This mapping is well-
defined because forward trajectories are unique in this system. The set θ = π is transverse
to the flow: at θ = π, θ̇ = 2

τ > 0.

6.2.4. Step 1: Tracking variations. Here we solve the variational equations associated with
the ODE.
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We let ζt =

∆θt
∆st
∆Φt

 denote a variation from a base trajectory

θ∗ts∗t
Φ∗t

 at time t. It is helpful

to consider ζt the difference between this trajectory and a “varied” trajectory

 θ∗t + ∆θt
s∗t + ∆st
Φ∗t + ∆Φt

.

ζt evolves according to the ODEs in (3.1) linearized about the trajectory

θ∗ts∗t
Φ∗t

:


τ d
dt∆θt = (1−G∗t ) sin(θ∗t )∆θt − g(1 + cos(θ∗t ))∆st + (1 + cos(θ∗t ))I

′(Φ∗t )∆Φt
d
dt∆st = − 1

τs
∆st

d
dt∆Φt = 0

(6.10)

where

G∗t = b− gs∗t + εI(Φ∗t ).

As previously mentioned, we set ε = 1 because our results will not depend on weak forc-
ing.

Two of the equations in system (6.10) are easily solved in terms of initial conditions at time
0:

∆Φt =∆Φ0 (6.11)

∆st =e−
t
τs ∆s0 (6.12)

Substituting into the first equation in (6.10),

τ
d

dt
∆θt = (1−G∗t ) sin(θ∗t )∆θt − g(1 + cos(θ∗t ))e

− t
τs ∆s0 + (1 + cos(θ∗t ))I

′(Φ∗t )∆Φ0 (6.13)

We can solve this equation using an integrating factor. We set
Qt = 1

τ (1−G∗t ) sin(θ∗t )

Rt = 1
τ (1 + cos(θ∗t ))e

− t
τs

St = 1
τ (1 + cos(θ∗t ))I

′(Φ∗t )

(6.14)

and substitute into (6.13) to write
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d

dt
∆θt =Qt∆θt − gRt∆s0 + St∆Φ0

d

dt
∆θt −Qt∆θt =− gRt∆s0 + St∆Φ0(

d

dt
∆θt

)
e−
∫ t
0 Qrdr −Qt∆θte−

∫ t
0 Qrdr = (−gRt∆s0 + St∆Φ0) e−

∫ t
0 Qrdr

d

dt

(
∆θte

−
∫ t
0 Qrdr

)
= (−gRt∆s0 + St∆Φ0) e−

∫ t
0 Qrdr

Integrating both sides from 0 to ts,

∆θtse
−
∫ ts
0 Qrdr −∆θ0 =

∫ ts

0
(−gRt∆s0 + St∆Φ0) e−

∫ t
0 Qrdrdt

∆θtse
−
∫ ts
0 Qrdr =∆θ0 +

∫ ts

0
(−gRt∆s0 + St∆Φ0) e−

∫ t
0 Qrdrdt

∆θts =∆θ0e
∫ ts
0 Qrdr +

∫ ts

0
(−gRt∆s0 + St∆Φ0) e

∫ ts
t Qrdrdt (6.15)

We write (6.11), (6.12), and (6.15) as a single matrix solution:

ζts− =

∆θts−
∆sts−
∆Φts−

 = B

∆θ0

∆s0

∆Φ0

 = Bζ0 (6.16)

where

B =

e
∫ ts
0 Qtdt −g

∫ ts
0 Rte

∫ ts
t Qrdrdt

∫ ts
0 Ste

∫ ts
t Qrdrdt

0 e−
ts
τs 0

0 0 1


To condense notation, we define

κ := e
∫ ts
0 Qtdt

Σ := gτ
2

∫ ts
0 Rte

∫ ts
t Qrdrdt

Ω :=
∫ ts

0 Ste
∫ ts
t Qrdrdt

(6.17)

such that we can write the matrix solution in the simple form

B =

κ − 2
τΣ Ω

0 e−
ts
τs 0

0 0 1

 . (6.18)
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6.3. Step 2: Tracking variations across discontinuities. Here we use saltation ma-
trices and our solution to the variational equations to derive an expression for DR.

Variations can be followed across discontinuities using saltation matrices [Aizerman] [Dieci2011].
At a spike, we use a modification of standard saltation matrices to follow the variation ζt
across the discontinuous resetting map. Our formula for saltation matrices is different from
the standard formula: standard saltation matrices let us see what a variation looks like after
both the base trajectory and the varied trajectory have crossed a vector field discontinuity;
but we want to know what the variation looks like if we let both the base trajectory and the
varied trajectory flow only up to the “resetting plane,” θ = π. We stop here because we need
to apply the resetting map to both trajectories when they reach the resetting plane.

Remark 6.3.1 (Derivation of Modified Saltation Matrices). Consider a system in which
ẋ = f(x) (where states are written as column vectors). Let x be a base trajectory and ζt
a variation just before xt reaches a target plane ν, transverse to the flow. Let η be a row
vector normal to ν in the direction of the flow. At the time that xt reaches ν, the varied
trajectory xt+ ζt is close to ν, but displaced from it by ηζt. If we allow the varied trajectory
to flow forward or backward to ν, it approaches ν at rate ηf(xt), so it reaches ν in time
∆t = − ηζt

ηf(xt)
. So it meets ν at the point

xt + ζνt =xt + ζt − f(xt)∆t

=xt + ζt − f(xt)
ηζt

ηf(xt)
.

Thus, we find that

ζνt =ζt − f(xt)
ηζt

ηf(xt)

=

(
I− f(xt)η

ηf(xt)

)
ζt = Mtζt

where

Mt := I− f(xt)η

ηf(xt)
(6.19)

This derivation is illustrated and discussed further in Figure 8.

We shall adopt the convention of using ζ̂ to refer to 2-dimensional vectors representing
variations in s and Φ at the plane θ = π, and using ζ̌ to refer to 3-dimensional vectors
representing variations in θ and s at any plane Φ = Φ∗. (Though ζ̌ lives in a plane, we
write it in three dimensions with last element zero for ease of notation.)

At the right hand limit of spike time 0, we write ζ̂0 =

(
∆ŝ0

∆Φ̂0

)
. We allow the varied

trajectory to flow forward to the target plane Φ = Φ∗0. We first embed ζ̂0 in 3-space with
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Figure 8: The difference between a base trajectory and a varied trajectory can be measured either
when they reach the same time point or when they reach a plane ν that they both cross transversely.
To transform one measurement to the other, we use a modification of the saltation matrix. Base
trajectory is green; varied trajectory is blue. ζt is the distance between trajectories when the base
trajectory reaches the plane (at time t, at the point xt); at this time, the varied trajectory has
not yet reached ν. ζνt is the distance between trajectories at the points where the two trajectories
reach ν. An ordinary saltation matrix would go on to determine the difference between the two
trajectories at the same time once both have crossed the plane, but since our trajectories reset
discontinuously immediately after reaching the plane, it is more useful to stop here. η is a unit
vector normal to ν, and f(xt) is the derivative of the base trajectory at ν.

the matrix

1 0
0 1
0 0

. Then, applying (6.19), we calculate the 3-D saltation matrix from the

plane θ = −π to the plane Φ = Φ∗0:

M0 =I−

 θ̇0

ṡ0

Φ̇0

(0 0 1
)

(
0 0 1

) θ̇0

ṡ0

Φ̇0

 = I−

 2
τ
− s0
τs

1

(0 0 1
)

(
0 0 1

) 2
τ
− s0
τs

1


=I−

0 0 2
τ

0 0 − s0
τs

0 0 1

 =

1 0 − 2
τ

0 1 s0
τs

0 0 0

 (6.20)

Thus, we have
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ζ̌0 =

∆θ̌0

∆š0

0

 = M0

1 0
0 1
0 0

 ζ̂0 = M̃0ζ̂0

where

M̃0 =

0 − 2
τ

1 s0
τs

0 0

 . (6.21)

Then the variation flows forward to ts− (the left-hand limit of spike time ts) and is trans-
formed by B, the solution to the linear variational equation:

ζ̌ts− =

∆θ̌ts−
∆šts−

0

 = Bζ̌0.

Next, the varied trajectory is allowed to join the base trajectory on the resetting plane

θ = θ∗ts = π, and then embedded in 2-dimensional (s,Φ) space by the matrix
(

0 1 0
0 0 1

)
.

Using θ = π as the target plane, we calculate the saltation matrix:

Mts− =I−

 θ̇ts
ṡts−
Φ̇ts

(1 0 0
)

(
1 0 0

) θ̇ts
− sts−

τs

Φ̇ts


= I−

 2
τ

− sts−
τs

1

(1 0 0
)

(
1 0 0

) 2
τ

− sts−
τs

1


=I−

 1 0 0

− sts−τ

2τs
0 0

τ
2 0 0

 =

 0 0 0
sts−τ

2τs
1 0

− τ
2 0 1

 (6.22)

ζ̂ts− =

 0
∆ŝts−
∆Φ̂ts−

 =

(
0 1 0
0 0 1

)
Mts− ζ̌ts− = M̃ts−

where

M̃ts− =

( sts−τ

2τs
1 0

− τ
2 0 1

)
(6.23)
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Finally, the inhibition on both trajectories jumps up according to the map ρ as defined in
(6.5), and ζ̂ts− in (s,Φ) space is transformed by

Dρ =

(
c 0
0 1

)
(6.24)

to become ζ̂ts . All together, we have

ζ̂ts = Dρζ̂ts− =DρM̃ts− ζ̌ts− = DρM̃ts−Bζ̌0

=DρM̃ts−BM̃0ζ̂0 (6.25)

=DRζ̂0

See Figure 6.4 for illustration.

Remark 6.3.2. The operator B can be applied to any variation in 3-space. Why, then, use
saltation matrices before and after applying B? We do so because the hybrid structure of
the system demands that return maps be computed from one spike to the next (i.e. within
the plane θ = π), be we want to connect the properties of this map to the rivering of θ-
trajectories, which most accessible to measurement by comparing trajectories with the same
Φ-coordinate. The relative behavior of trajectories at different Φ coordinates is complicated
by the fact that they are receiving different inputs I(Φ); but the saltation matrix M̃0 neatly
eliminates the term Ω, which is the only term in B that depends explicitly on I(·).

Substituting into (6.25),

DR̃ =DρMts−BM̃0

=

(
c 0
0 1

)( sts−τ

2τs
1 0

− τ
2 0 1

)κ − 2
τΣ Ω

0 e−
ts
τs 0

0 0 1

0 − 2
τ

1 s0
τs

0 0


=

(
cτ

sts−
2τs

c 0

− τ
2 0 1

)−
2
τΣ − 2

τ κ−
2
τΣ s0

τs

e−
ts
τs

s0
τs
e−

ts
τs

0 0

 (6.26)

=

(
−Σc

sts−
τs

+ ce−
ts
τs c

sts−
τs

(−κ− Σ s0
τs

) + c s0τs e
− ts
τs

Σ κ+ Σ s0
τs

)
(6.27)

Substituting sts− = s0e
− ts
τs ,

=

(
ce−

ts
τs (1− Σ s0

τs
) ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

Σ κ+ Σ s0
τs

)
(6.28)
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We recall the assumption that I(·) was differentiable. We find now that since the term Ω no
longer features directly in the expression for DR̃ (see Remark 6.3.2), the terms in DR̃ no
longer depend on I ′(·), so all terms in DR̃ are continuous with respect to initial conditions
regardless of whether I(·) is continuously differentiable.

6.4. Step 3: Change of variables. Here we change to coordinates in which the expression
for our return map reveals the contraction induced by rivering under inhibition.

Using the terms in DR from (6.28), we could apply the Annulus Principle (Theorem 6.2.1)
to the map R to determine when an attracting invariant torus must exist as a graph of s
over Φ. The conditions for the existence of an attracting invariant torus would depend on
the smallness of the first row of DR, and would therefore follow from small c and/or small
maximum e−

ts
τs . However, they would not make clear the role of κ, the measure of rivering

of population phase under inhibition, in the formation of an invariant torus. This is because
these conditions are conditions that ensure sufficient contraction between states with the
same value of Φ; but rivering under inhibition causes contraction in a different direction, and
therefore gives rise to a torus that is a graph of s over a different independent variable. Due
to contraction by rivering, we expect that any points following the same (st,Φt) trajectory
will reach approximately the same θ state when they spike next, so we let φ denote a
quantity that is invariant over an (st,Φt) trajectory and use it as a new coordinate instead
of Φ.

After initial time 0, we have st = s0e
− t
τs and Φt = Φ0 + t. We consider the quantity

φ = Φt + τs ln(st) ∈ T1. Along an (s,Φ) trajectory we have

φ̇ =
d

dt
(Φt + τs ln(st)) =

d

dt

(
Φ0 + t+ τs ln

(
e−

t
τs

))
=
d

dt
(Φ0 + t− t) =

d

dt
Φ0 = 0

so φ is constant over time for points on the same (st,Φt) trajectory. (See Figure 6.4.) We
change coordinates, replacing Φ with φ. We define R̃ as R in this new coordinate system,
and we use ζ̃ to represent a variation in the new coordinates. To change coordinates, we
write

F

(
s
Φ

)
=

(
s

Φ + τs ln(s)

)
and F−1

(
s
φ

)
=

(
s

φ− τs ln(s)

)
DF =

(
1 0
τs
s 1

)
and DF−1 =

(
1 0
− τs

s 1

)
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Figure 9: Using s and Φ, we define a new variable φ such that φ is constant along an (s,Φ) trajectory
from one spike to the next.
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Figure 10: Schematic of the components of the return map R̂ and its derivative DR̂. The state
at time 0 in (s, φ)-coordinates is transformed to (s,Φ) coordinates by F−1; flows forward from
(−π, s0,Φ0) to (π, sts ,Φts) according to the ODE (1); is reset by the synaptic rise map ρ; and then
is transformed back to (s, φ) coordinates by F. An initial variation at a spike in (s, φ) coordinates
is transformed to (s,Φ) coordinates by DF−1; flows to the Φ = Φ∗0 plane via M̃0; flows forward to
time ts according to the variational equation (6.10) and its solution B; flows to the θ = π plane via
M̃ts ; is reset by synaptic rise via Dρ; and finally, is transformed back to (s, φ) coordinates by DF.
The variation needs to be transformed by saltation matrices before and a
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R̃

(
s0

φ0

)
=F

(
R

(
F−1

(
s0

φ0

)))
DR̃ =DFtsDRDF−1

0

See Figure 6.4 for illustration.

Substituting from (6.28),

DR̃ =

(
1 0
τs
sts

1

)(
ce−

ts
τs (1− Σ s0

τs
) ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

Σ κ+ Σ s0
τs

)(
1 0
− τs
s0

1

)

=

(
1 0
τs
sts

1

)(
ce−

ts
τs κ ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

− τs
s0
κ κ+ Σ s0

τs

)

=

 ce−
ts
τs κ ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

( ce
− ts
τs

sts
− 1

s0
)τsκ ce−

ts
τs

s0
sts

(1− κ− Σ s0
τs

) + κ+ Σ s0
τs


=

 ce−
ts
τs κ ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

( ce
− ts
τs

sts
− 1

s0
)τsκ (ce−

ts
τs

s0
sts
− 1)(1− κ− Σ s0

τs
) + 1


=

 ce−
ts
τs κ ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

( ce
− ts
τs s0

stss0
− sts

stss0
)τsκ

s0ce
− ts
τs −sts
sts

(1− κ− Σ s0
τs

) + 1


Substituting sts− = s0e

− ts
τs , we have

=

(
ce−

ts
τs κ ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)
csts−−sts
stss0

τsκ
csts−−sts

sts
(1− κ− Σ s0

τs
) + 1

)
Substituting csts−−sts = csts−−ρ(sts−) = csts−(1+ c(sts−−1)) = −(1− c), we have

=

(
ce−

ts
τs κ ce−

ts
τs
s0
τs

(1− κ− Σ s0
τs

)

− 1−c
stss0

τsκ 1− 1−c
sts

(1− κ− Σ s0
τs

)

)
(6.29)

(6.30)

6.5. Step 4: Applying the Annulus Principle. Here we use the Annulus Principle to
find conditions under which R̃ possesses an attracting invariant circle.

Using the terms in DR̃ from (6.29), we will apply the Annulus Principle (Theorem 6.2.1)
to the map R̃. Since 1 − c ≤ s ≤ 1 immediately after ever spike, we choose the annulus
K = {(s, φ)|s ∈ [1 − c, 1]}. We set n = 1 and m = 1; we substitute s for r and φ for x,

and we use TI as the period of φ instead of 2π. We let R̃(s, φ) =

(
f̃(s, φ)

F̃ (s, φ)

)
, and let ‖·‖o
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denote a supremum norm over initial conditions in K as in the Annulus Principle. Using
the bounds s0, sts ∈ [1− c, 1] which hold on K, we have



∂F̃
∂φ = 1− 1−c

sts
(1− κ− Σ s0

τs
)

‖
(
∂F̃
∂φ

)−1
‖o = ‖ 1

1− 1−c
sts

(1−κ−Σ
s0
τs

)
‖o ≤ ‖ 1

1−(1−κ−Σ
s0
τs

)
‖o ≤ ‖ 1

κ+Σ
s0
τs

‖o

‖∂F̃∂s ‖
o = ‖ (1−c)τs

stss0
κ‖o ≤ τs

1−c‖κ‖
o

‖∂f̃∂φ
(
∂F̃
∂φ

)−1
‖o = ‖

ce
− ts
τs

s0
τs

(1−κ−Σ
s0
τs

)

1− 1−c
sts

(1−κ−Σ
s0
τs

)
‖o ≤ ‖ce−

ts
τs
s0
τs

1−κ−Σ
s0
τs

1−(1−κ−Σ
s0
τs

)
‖o ≤ c‖e−

ts
τs ‖o 1

τs
‖ 1
κ+Σ

s0
τs

− 1‖o

‖∂f̃∂s ‖
o = c‖e−

ts
τs κ‖o ≤ c‖e−

ts
τs ‖o‖κ‖o

(6.31)

We place simple bounds on these terms by defining

M := max(1, ‖ 1

κ+ Σ s0
τs

‖o) (6.32)

and writing


‖
(
∂F̃
∂φ

)−1
‖o ≤M

‖∂F̃∂s ‖
o ≤ τs

1−c‖κ‖
o

‖∂f̃∂φ
(
∂F̃
∂x

)−1
‖o ≤ c‖e−

ts
τs ‖o 1

τs
M

‖∂f̃∂s ‖
o ≤ c‖e−

ts
τs ‖o‖κ‖o

(6.33)

Two conditions of the Annulus Principle are trivially met:

(1) R̃ maps K into itself.

(3) Since κ and Σ are positive and sts ≥ 1−c, the expression ∂F̃
∂φ = 1− 1−c

sts
(1−κ−Σ s0

τs
) ≥

1 − (1 − κ − Σ s0
τs

) ≥ 0 on the whole annulus. Therefore F̃ is increasing on T. F̃
is a composition of a Poincare section return map and a differentiable map, so it is
continuously differentiable; there F̃ is a diffeomorphism on T.

Thus, an attracting invariant torus exists if the other two conditions are met:

(2) ‖∂f̃∂s ‖o < 1.

(4) ‖
(
∂F̃
∂Φ

)−1
‖o · ‖∂f∂s ‖o + 2

√
‖
(
∂F
∂Φ

)−1‖o · ‖∂F∂s ‖o · ‖
∂f
∂Φ

(
∂F
∂Φ

)−1‖o < 1.

Substituting from (6.33), we find that an attracting invariant torus exists if for all initial
coordinates (s∗0, φ

∗
0) ∈ K,
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(2) c‖e−
ts
τs ‖o‖κ‖o < 1.

(4) Mc‖e−
ts
τs ‖o‖κ‖o + 2

√
M τs

1−c‖κ‖oc‖e
− ts
τs ‖o 1

τs
M < 1, or

M

[
c‖e−

ts
τs ‖o‖κ‖o + 2√

1−c

√
c‖e−

ts
τs ‖o‖κ‖o

]
< 1

6.5.1. Validating results through simulation. Here we use simulation to size up the param-
eter regime in which R̃ possesses an attracting invariant circle.

We have proven that given an otherwise full set of parameters, sufficiently large g or suf-
ficiently small c guarantees the existence of an invariant circle for the return map and an
invariant broken torus for the full system. We do not, however, produce explicit bounds
on these parameters that guarantee the existence of said torus. Here we check that the
invariant torus exists for a set of “reasonable” parameter values by numerically calculat-
ing c‖e−

ts
τs ‖o‖κ‖o and M (defined in (6.32)) over a dense grid of initial conditions and

verifying that the conditions of the Annulus Principle (as formulated in (??)) are met ev-
erywhere. In particular, we find the maximal values of e−

ts
τs , κ, and 1

κ+Σ
s0
τs

over a grid

of 220 initial conditions spanning the set θ0 = −π, s0 ∈ [1 − c, 1], Φ ∈ T1; if both

c‖e−
ts
τs ‖o‖κ‖o and N := M

[
c‖e−

ts
τs ‖o‖κ‖o + 2√

1−c

√
c‖e−

ts
τs ‖o‖κ‖o

]
are both less than 1

(where M = max(1, ‖ 1
κ+Σ

s0
τs

‖o) as in (6.32)), then conditions 2 and 4 are met and the

Annulus Principle holds.

We use the default parameters c = 0.4, τ = 1.5, τs = 9, g = 1.5, and b = 0.2, where I(·) is
a series of gaussian pulses bounded above by B = 0.4.

Parameter set ‖e−
ts
τs ‖o ‖κ‖o ‖ 1

κ+Σ
s0
τs

‖o c‖e−
ts
τs ‖o‖κ‖o N

(default) 0.1127 0.0061 4.4567 0.0003 0.1917
τ = 2.25 0.0611 0.0275 4.2647 0.0007 0.2883
g = 1 0.1683 0.0392 4.5422 0.0026 0.6146
τs = 6 0.0787 0.0150 4.2446 0.0005 0.2401
b = 0.3 0.1698 0.0153 3.9365 0.0010 0.3320
B = 0.6 0.1552 0.0164 6.1150 0.0010 0.5095
c = 0.6 0.1683 0.0392 4.5422 0.0040 0.9219

None of the values in the table above exceed 1, so the Annulus Principle hold for all
parameter sets described here. Making c, τ , b, or B larger or g or τs smaller seems to drive
the system towards the regime in which an invariant torus cannot be guaranteed by the
methods presented here by limiting the time between spikes and/or the amount of rivering
under inhibition. However, the torus seems relatively robust in the neighborhood of our
default parameters, especially to changes in the parameters b, τs, and τ .
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6.5.2. Small c guarantees an invariant torus. Here we show that R̃ possesses an attracting
invariant circle for sufficiently small c.

Given any full set of parameters not including c, plus an upper bound B on I(·), κ and
Σ are bounded from above and away from zero over the annulus s ∈ [1

2 , 1] and over all

I(·) < B, and they do not depend on c. So we may choose c such that c‖e−
ts
τs ‖o‖κ‖o is

arbitrarily small, whereasM remains bounded above; therefore, for sufficiently small c > 0,
an attracting invariant circle exists for R̃ for all I(·) < B, and a broken attracting invariant
torus exists for the system. The existence of this torus may be attributed to convergence
of trajectories due to synaptic resetting.

6.5.3. Large g guarantees an invariant torus. Here we show that R̃ possesses an attracting
invariant circle for sufficiently large g, due both to contraction of phase space as s decays
and contraction of phase space as θ rivers under inhibition.

Given any full set of parameters not including g, a nonnegative forcing signal I(·), and a
bound B on I(·) such that 0 ≤ I(·) ≤ B < 1 − b, we can show that g may be chosen
sufficiently large that e−

ts
τs and κ become arbitrarily small over the annulus K while Σ

remains bounded away from zero, proving the existence of a broken attracting invariant
torus for sufficiently large g. The existence of this torus may be attributed partially to
small κ, i.e. due to rivering of trajectories under inhibition.

At any time t, let G1
t denote the maximum possible input current: G1

t = b−g(1−c)e−
t
τs +B.

Let C1 denote the curve 0 = 1− cos(θ) + (1 + cos(θ))G1
t in θ-vs.-t space: θ cannot cross C1

from below, so θ remains below −π
2 until G1

t crosses −1 and C1 crosses −π
2 at time to :=

τs ln
(
g(1−c)
b+B+1

)
, which grows without bound as g →∞. Let G2

t denote the minimum possible

input current: G2
t = b−ge−

t
τs . Let C2 denote the curve 1

τ = 1
τ

[
1− cos(θ) + (1 + cos(θ))G2

t

]
in θ-vs.-t space: θ increases with slope at least 1

τ below the lower branch of C2. See Figure
11.

First, we show that M is bounded from above. From definition (6.32), we see that it is
sufficient to show that Σ is bounded away from zero. We note that G < b + B < 1, so
1−G > 0. For θ ∈ [0, π], we have

Qt = (1−Gt) sin(θt) ≥ 0. (6.34)

From (6.17),

Σ =
g

2

∫ ts

0
Rte

∫ ts
t Qrdrdt (6.35)
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Figure 11: Above: θt trajectory is blue, C1 is red, C2 is green. θt cannot cross π
2 until C1 crosses

it at to. θt rises faster than 1
τ below C2, and C2 is below π

2 before to, so the trajectory must cross
C2 before t′ := πτ

2 . (In fact, it crosses much sooner.) tx is defined as the last time θt crosses zero
before a spike (or in this case, the only time). Below: Gt is blue, G1

t is red, Gt2 is green. A spike
cannot occur until G1

t reaches 0 at time t1; a spike must occur within a window of Tw after G2
t

crosses b
2 at time t2. (In fact, the spike occurs much sooner.)

Let tx denote the last time θ crosses 0 before a spike. Using Rt > 0, we can bound the
integral from below by restricting it to just the final rise time [tx, ts]:

>
g

2

∫ ts

tx

Rte
∫ ts
t Qrdrdt (6.36)

For t ∈ [tx, ts], θ ∈ [0, π], so from (6.34),

>
g

2

∫ ts

tx

Rtdt (6.37)
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From (6.14),

>
g

2

∫ ts

tx

1

τ
(1 + cos(θ∗t ))e

− t
τs dt (6.38)

=
1

2τ

∫ ts

tx

1

τ
(1 + cos(θ∗t ))(ge

− t
τs )dt (6.39)

Once the level of inhibition, gs0e
− t
τs , has dropped to b

2 , we have G
2
t = b−gs0e

− t
τs = b

2 ; after
this point, since the input current must be positive and bounded away from zero, a spike
must occur within some maximum time window Tw. During this time gs0e

− t
τs can drop no

further than b
2e
−Tw
τs . Thus, gs0e

− t
τs > b

2e
−Tw
τs , and, using s0 < 1, ge−

t
τs > b

2e
−Tw
τs :

Σ >
1

2τ

∫ ts

tx

(1 + cos(θ∗t ))
b

2
e−

Tw
τs dt (6.40)

Finally, we change variables from an integral over time to an integral over θ using dt =
dθ
θ̇
:

=
b

4τ
e−

Tw
τs

∫ π

0
(1 + cos(θ))

dθ

θ̇
(6.41)

Since G < 1, θ̇ := 1
τ [1− cos(θ) + (1 + cos(θ))G] < 2

τ :

Σ >
b

4τ
e−

Tw
τs

∫ π

0
(1 + cos(θ))

dθ
2
τ

(6.42)

=
1

8
e−

Tw
τs π (6.43)

so Σ is bounded away from zero.

Next, we show that by choosing g large, c‖e−
ts
τs ‖o‖κ‖o can be made arbitrarily small. We

note that a spike cannot occur until b − gs0e
− t
τs + B > 0, so we must have e−

ts
τs < b+B

gs0
.

By choosing g large, we can make this bound arbitrarily close to zero, so the term e−
ts
τs in

c‖e−
ts
τs ‖o‖κ‖o may be made arbitrarily small by choosing g large.

κ, too, becomes arbitrarily small for g sufficiently large. We prove this in two steps: first,
we show that the positive component of the integral in the exponent of κ is bounded for
all g, and then we show that the negative component becomes arbitrarily negative for large
g.

A spike cannot occur until it is possible for G to be greater than zero, i.e. until G1
t >, or

gs0e
− t
τs < b+B. However, as previously discussed, onceG2

t = b
2 , a spike must occur within a

bounded time window Tw. The first event occurs at t1 = τs ln
(
gs0
b+B

)
, and the second occurs

at t2 = τs ln
(

2gs0
b

)
, so the time between them is t2− t1 = τs ln

(
2(b+B)

b

)
, independent of g.
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Therefore there is a window of time of bounded duration τs ln
(

2(b+B)
b

)
+Tw during which θ

(and hence sin(θ)) may be greater than zero. During this window, G > b− gs0e
− t
τs > −B,

so Qt = (1−Gt) sin(θt) is bounded from above; hence, the integral of Qt over this window
is also bounded from above. Since this time window is the only time during which sin(θ)
can be positive, and 1 − Gt > 0, this window is the only time during which Qt may be
positive.

The rest of the integral of Qt between spikes grows more negative without bound as g →∞.
To prove this, we show that although Qt starts at zero, it exceeds a certain lower bound after
a bounded transient, and the time it remains above that lower bound grows unboundedly
with g.

The lower branch of C2 is below the lower branch of C1, so before to, the lower branch of
C2 is below −π

2 . Therefore, θ must cross C2 less than time t′ := −π
2

1
τ

= −πτ
2 after its initial

spike, and then must stay between the lower branches of C1 and C2 until to.

Along C2, we have θ = − cos−1
(

G2
t

1−G2
t

)
. Applying basic rules of trigonometry, this gives

us sin(θ) = −
√

1−2G2
t

1−G2
t

. Before to, θ < −π
2 below C1, so between C1 and C2 we have

sin(θ) ∈ [−1,−
√

1−2G2
t

1−G2
t

], and in particular sin(θ) < −
√

1−2G2
t

1−G2
t

. This gives us

Qt = sin(θt)(1−Gt) <−
√

1− 2G2
t

1−G2
t

(1−Gt) (6.44)

<−
√

1− 2G2
t (1−G1

t )

1−G2
t

(6.45)

G2
t > −ge

− t
τs , and for t < to, G1

t < −1, so

<−
√

3(1− b+ g(1− c)e−
t
τs −B)

1 + ge−
t
τs

(6.46)

b+B < 1, so

<−
√

3
g(1− c)e−

t
τs

1 + ge−
t
τs

(6.47)

=−
√

3
1− c
1

ge
− t
τs

+ 1
(6.48)

Since G1
t = b− g(1− c)e−

t
τs +B < −1, we have ge−

t
τs > 1+b+B

1−c , and

<−
√

3
1− c

1−c
1+b+B + 1

(6.49)



RESTRICTED PHASE-LOCKING DYNAMICS OF PERIODICALLY FORCED NETWORK GAMMA RHYTHMS45

This quantity is obviously negative and bounded away from zero, so as the interval [0, to]
becomes arbitrarily long, the integral of Qt over this interval becomes arbitrarily negative.
As g → ∞, this arbitrarily large negative component of the integral arbitrarily outweighs
the bounded positive component, making κ := e

∫ ts
0 Qtdt arbitrarily close to zero.

6.6. ING Monostability. Here we prove the theorem:

Theorem 6.6.1. When the ING oscillator described in (1) with c = 0 or sufficiently small
c > 0 is forced by periodic square pulses, stable 1 : 1 phase locked spiking can occur at only
one forcing phase.

We do so by studying the TI -periodic interspike interval function Ψ(Φ), which maps an
initial forcing phase Φ at a spike time to the time interval until the next spike and is well-
defined for c = 0. When Ψ(Φ) = TI , the next spike occurs at forcing phase Φ + TI , after
exactly one forcing cycle, i.e. the system is phase locked to the forcing. We show here that
when the forcing consists of a TI -periodic square pulse, Ψ(Φ) may cross TI on only two
intervals of Φ on the circle, and Ψ′(Φ) may change signs only once on each. It is easy to
check that this allows for only two crossings of TI . (See Figure 13.) From the basic theory
of one-dimensional maps, only a downward crossing may be stable; therefore, stable 1:1
phase locking can only occur at one phase. This result persists for small c > 0.

6.6.1. Proof Outline.

(1) Working from system with c = 0 and using the variational techniques from the
previous appendix, we show that Ψ′(Φ0) can be written as an integral over the θ
trajectory between spikes.

(2) Using the standard change of variables from the theta neuron to the QIF neuron, we
write Ψ′(Φ0) as an integral over the V trajectory of the corresponding QIF neuron.

(3) We let I(·) be a square pulse of duration σ and positive height Istep. A simple
argument shows that Ψ(Φ0) can only cross TI on one of two subintervals of [0, TI):
on one, spikes occur between pulses, and on the other, spikes occur during the pulse.

(4) On the first subinterval, we use the integral expression for Ψ(Φ0) to show that its
sign is opposite the sign of

∫ σ
u=0 2Vu+tp(Φ0)du, where tp is the time between a spike

and the arrival of a pulse; therefore, the sign of Ψ′(Φ0) is the same as the sign of∫ σ
u=0 2Vu+tp(Φ0)du.

(5) We present Lemma 6.6.1, which states that Vt strictly increases for as long after a
spike as the input current is flat. Using this lemma, we show that

∫ σ
u=0 2Vu+tp(Φ0)du

increases with tp, which decreases as Φ0 increases; therefore Ψ′(Φ0) can change signs
only once (negative to positive) on the first subinterval of [0, TI).

(6) An argument paralleling that of the preceding two steps shows that on the second
subinterval, Ψ′(Φ0) may change signs only once (positive to negative).
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(7) A simple argument shows that these conditions on Ψ′(Φ0) allow ∆ to cross TI only
twice transversely or once tangentially. Only a transverse downward crossing is
asymptotically stable, so only one stable 1:1 phase locked trajectory may exist.

(8) The above analysis holds only for c = 0. However, for sufficiently small c > 0, an
attracting invariant torus exists (see previous appendix) that must contain all stable
orbits and on which an interspike interval map Ψ(·) is uniquely defined. This map
is a differentiable perturbation of the same map for c = 0, so for sufficiently small
c > 0, Ψ(·) may only cross TI twice and only one stable 1:1 phase locked trajectory
may exist.

(9) We prove Lemma 6.6.1.

Remark 6.6.1. This proof relies heavily on the strictly-decreasing inhibition: without it,
the lemma stating that Vt strictly increases while the input current is flat might not hold.

6.6.2. Step 1: Ψ′(Φ0) expressed as the solution to a variational equation. Let t = 0 denote
an initial spike time, and let ts denote the next spike time. In section 3.1.1, we showed
that for c = 0, the map P(Φ̄) = Φ̄ + Ψ(Φ) on the real line (from the forcing phase at t = 0
to the forcing phase at ts) is a TI -periodic orientation-preserving homeomorphism on R.
Its derivative is the ratio between a variation in forcing phase at the first spike and the
resulting variation in forcing phase at the second:

P′(Φ̄) =
∆Φ̂ts

∆Φ̂0

. (6.50)

We can write a similar expression for Ψ′(Φ):

Ψ(Φ) =P(Φ̄)− Φ̄

Ψ′(Φ) =P′(Φ̄)− 1 =
∆Φ̂ts

∆Φ̂0

− 1 (6.51)

In the previous appendix, we used a saltation matrix to project a variation ζ̂0 at initial
spike time 0 onto the plane Φ = Φ∗0; we followed it to the next spike at time ts using the
linearized ODE; we projected it onto the plane θ = π; and we followed it through a synaptic
resetting event. In this appendix, we will skip the first step and use the linearized ODE to
track a variation that is initialized at the plane θ = −π. Following the form of equation
(6.25) from the previous appendix but leaving off the initial projection by the saltation
matrix M̂0, we write

ζ̂ts =DρMts−Bζ̂0
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where B is defined in (6.18), Mts− is defined in (6.22), and Dρ is defined in (6.24).

=

1 0 0
0 c 0
0 0 1

 0 0 0
1
2

sts−
µ 1 0

−1
2 0 1

Bζ̂0

For c = 0:

=

 0 0 0
0 0 0
−1

2 0 1

Bζ̂0

=

 0 0 0
0 0 0
−1

2 0 1

κ −2gΣ Ω

0 e−
ts
τs 0

0 0 1

 ζ̂0

=

 0 0 0
0 0 0
−1

2κ 0 −1
2Ω + 1

 ζ̂0

ζ̂0 is a variation at the plane θ = −π, so ∆θ̂0 = 0:

=

 0 0 0
0 0 0
−1

2κ 0 −1
2Ω + 1

 0
∆ŝ0

∆Φ̂0


∆θ̂ts

∆ŝts
∆Φ̂ts

 =

 0
0

(−1
2Ω + 1)∆Φ̂0


∆θ̂ts =(−1

2
Ω + 1)∆Φ̂0 (6.52)

Substituting into (6.51),

Ψ′(Φ0) =
(−1

2Ω + 1)∆Φ̂0

∆Φ̂0

− 1 = −1

2
Ω + 1− 1 = −1

2
Ω (6.53)

or, substituting from (6.14) and (6.17) and using Φ∗t = Φ∗0 + t,

Ψ′(Φ0) = − 1

2τ

∫ ts

0
(1 + cos(θ∗t ))I

′(Φ0 + t)e
1
τ

∫ ts
t (1−G∗

r) sin(θ∗r )drdt. (6.54)
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Ψ′(Φ0) =− 1

2

∫ ts

0
(1 + cos(θ∗t ))I

′(Φ0 + t)e
∫ ts
t (1−G∗

r) sin(θ∗r )drdt

=− 1

2

∫ ts

0
eln(1+cos(θ∗t ))I ′(Φ0 + t)e

∫ ts
t (1−G∗

r) sin(θ∗r )drdt

=− 1

2

∫ ts

0
e
∫ π
θ∗t

sin(θ)
1+cos(θ)

dθ
I ′(Φ0 + t)e

∫ ts
t (1−G∗

r) sin(θ∗r )drdt

We change coordinates in the integral to integrate along the path θ∗t , using dθ = θ̇∗t dt and
θ∗ts = π:

=− 1

2

∫ ts

0
e
∫ ts
t

sin(θ∗r )

1+cos(θ∗r )
θ̇∗rdrI ′(Φ0 + t)e

∫ ts
t (1−G∗

r) sin(θ∗r )drdt

=− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t

sin(θ∗r )

1+cos(θ∗r )
θ̇∗r+(1−G∗

r) sin(θ∗r )dr
dt

Substituting for θ̇∗t from (1),

=− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t

sin(θ∗r )

1+cos(θ∗r ) [1−cos(θ̇∗r )+(1+cos(θ̇∗r ))Gr]+(1−G∗
r) sin(θ∗r )dr

dt

=− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t

sin(θ∗r )(1−cos(θ̇∗r ))

1+cos(θ∗r )
+sin(θ∗r )dr

dt

=− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t

2 sin(θ∗r )

1+cos(θ∗r )
dr
dt

Applying the trigonometric identity tan
(
θ
2

)
= sin(θ)

1+cos(θ) ,

=− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t 2 tan

(
θ∗r
2

)
dr
dt

And changing to the V variable of the QIF neuron using (3.3),

=− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t 2V ∗

r drdt

V ∗r depends on the initial forcing phase Φ0. We reintroduce this dependency into our
notation:

Ψ′(Φ0) =− 1

2

∫ ts

0
I ′(Φ0 + t)e

∫ ts
t 2V ∗

r (Φ0)drdt (6.55)

6.6.3. Step 3: Phase locking to a square pulse. Let us consider a TI -periodic input consisting
of a periodic square pulse of height Istep and duration σ < TI . The input as a function of
forcing phase Φ can be written as
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σ0 TI

{ {
P(σ)P(0)

I

P(T )I
P(0) - T P(σ) - TI

A A'

Figure 12: Illustration of the intervals in which 1:1 phase locking can occur. If phase locked spikes
occur at phase Φ̄, then P(Φ̄)− TI = Φ̄. Therefore, if Φ̄ ∈ [σ, TI), i.e., spikes occur between pulses,
then Φ̄ ∈ A, where A = [σ, TI) ∩ [P(σ)− TI ,P(TI)− TI ]. Similarly, if Φ̄ ∈ [0, σ), i.e., spikes occur
during pulses, then Φ̄ ∈ A′, where A′ = [0, σ)∩ [P(0)− TI ,P(σ)− TI ]. Phase locking cannot occur
for Φ̄ outside these intervals.

I(Φ) =

{
Istep when Φ ∈ [0, σ)

0 when Φ ∈ [σ, TI)
(6.56)

and we can write its distributional derivative as

I ′(Φ) = Istepδ(Φ)− Istepδ(Φ− σ) (6.57)

where δ is the Dirac delta function on the circle T1 = [0, TI).

We showed in section 3.1.1 that the map P(Φ̄) on the real line from the forcing phase at
t = 0 to the forcing phase at ts is a TI -periodic orientation-preserving homeomorphism on
R. The image of [0, σ) under P is therefore an interval on R. 1:1 phase locking occurs
at any phase Φ where P(Φ̄) = Φ̄ + TI . By the TI -periodicity of P, a 1:1 locking phase
Φ̄ ∈ R exists if and only if there exists a 1:1 locking phase Φ̄ ∈ [0, TI). If this point is on
[σ, TI), then it must fall in the subinterval A = [σ, TI) ∩ [P(σ) − TI ,P(TI) − TI); if it is
in [0, σ), then it must fall in the subinterval A′ = [0, σ) ∩ [P(0) − TI ,P(σ) − TI). In the
first case, phase locked spiking occurs between pulses; in the second, phase locked spiking
occurs during the pulse. (See Figure 6.6.3.)
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In the following two steps, we shall assume the first case (Φ0 ∈ A), such that the upward
step of current arrives before the downward step. The upward step arrives at time tp,
where

tp = −Φ0 mod TI (6.58)

and the downward step arrives at time tp +σ. The same argument will apply to the second
case (Φ0 ∈ A′), in which the downward step arrives before the upward step; we simply need
to replace Istep with −Istep and tp+σ, the time of the second step, with tp+(TI−σ).

6.6.4. Step 4: sgn(Ψ′(Φ0) for a square pulse. We substitute the derivative (6.57) into
(6.55):

Ψ′(Φ0) =− 1

2τ

∫ ts

0
(1 + cos(θ∗t )) (Istepδ(Φ0 + t)− Istepδ(Φ0 + t− σ)) e

1
τ

∫ ts
t (1−G∗

r) sin(θ∗r )drdt

From (6.58), we see that these delta functions will pick out t = tp and t = tp+σ, respectively,
so

Ψ′(Φ0) =− Istep
2τ

(
(1 + cos(θ∗tp))e

1
τ

∫ ts
tp

(1−G∗
r) sin(θ∗r )dr − (1 + cos(θ∗tp+σ))e

1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
)

(6.59)

Factoring out (1 + cos(θ∗tp+σ))e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr from both exponentials:

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr

(
1 + cos(θ∗tp)

1 + cos(θ∗tp+σ)
e

1
τ

∫ tp+σ
tp

(1−G∗
r) sin(θ∗r )dr − 1

)
(6.60)

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e

ln(1+cos(θ∗tp ))−ln(1+cos(θ∗tp+σ))
e

1
τ

∫ tp+σ
tp

(1−G∗
r) sin(θ∗r )dr − 1

)
(6.61)

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr

e∫ θ∗tp+σ

θ∗tp

sin(θ)
1+cos(θ)

dθ
e

1
τ

∫ tp+σ
tp

(1−G∗
r) sin(θ∗r )dr − 1


(6.62)
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We take our integral from θ∗tp to θ∗tp+σ along the path θ∗r , and change variables from θ to
the time variable r using dθ = θ̇∗rdr.

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

sin(θ∗r )

1+cos(θ∗r )
θ̇∗rdre

1
τ

∫ tp+σ
tp

(1−G∗
r) sin(θ∗r )dr − 1

)
(6.63)

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

sin(θ∗r )

1+cos(θ∗r )
(1−cos(θ∗r )+(1+cos(θ∗r ))G∗

rdre
1
τ

∫ tp+σ
tp

(1−G∗
r) sin(θ∗r )dr − 1

)
(6.64)

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

sin(θ∗r )G∗
r+

sin(θ∗r )(1−cos(θ∗r ))

1+cos(θ∗r )
dr
e

1
τ

∫ tp+σ
tp

sin(θ∗r )−sin(θ∗r )G∗
rdr − 1

)
(6.65)

Combining the integrals,

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

sin(θ∗r )(1−cos(θ∗r ))

1+cos(θ∗r )
+sin(θ∗r )dr − 1

)
(6.66)

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

2 sin(θ∗r )

1+cos(θ∗r )
dr − 1

)
(6.67)

Applying the trigonometric identity tan
(
θ
2

)
= sin(θ)

1+cos(θ) ,

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

2 tan
(
θ∗r
2

)
dr − 1

)
(6.68)

And changing to the V variable of the QIF neuron using (3.3),

=− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

2V ∗
r dr − 1

)
(6.69)

V ∗r depends on the initial forcing phase Φ0. We reintroduce this dependency into our
notation:

Ψ′(Φ0) =− Istep
2τ

e
1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
(
e
∫ tp+σ
tp

2V ∗
r (Φ0)dr − 1

)
(6.70)

In order to show that Ψ′(Φ0) changes sign only once on interval A, it is sufficient to note
the ± sign of Ψ′(Φ0):

sgn
(
Ψ′(Φ0)

)
=sgn

(
−Istep

2τ

)
sgn

(
e

1
τ

∫ ts
tp+σ(1−G∗

r) sin(θ∗r )dr
)
sgn

(
e
∫ tp+σ
tp

2V ∗
r (Φ0)dr − 1

)
(6.71)

=− sgn (Istep) sgn

(
e
∫ tp+σ
tp

2V ∗
r (Φ0)dr − 1

)
(6.72)

=− sgn (Istep) sgn

(∫ tp+σ

tp

2V ∗r (Φ0)dr

)
(6.73)
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To eliminate the dependence of the bounds of integration on tp, we change variables in the
integral to q = r − tp:

=− sgn (Istep) sgn

(∫ σ

0
2V ∗q+tp(Φ0)dq

)
(6.74)

(6.75)

6.6.5. Step 5: Ψ′(Φ0) may change signs only once. Before the arrival of the pulse, V ∗t (Φ0)
is independent of Φ0 because the cell receives the same flat current before the first step
no matter the initial forcing phase, so we write V ∗t . We prove in Lemma 6.6.1 below that
during this time, d

dtV
∗
t > 0. Therefore the value of V when the pulse arrives increases with

tp, the time between the initial spike and the arrival of the pulse.

For q ∈ [0, σ), V ∗q+tp is an autonomous 1-D dynamical system with respect to q:

∂

∂q
V ∗q+tp = V ∗q+tp

2 − ge−
q+tp
τs + Istep (6.76)

with initial condition V ∗tp at q = 0. Trajectories cannot cross, so as the initial condition
increases with tp, so does V ∗q+tp for any q ∈ [0, σ), at which point the pulse ends.

Since ∂
∂tp
V ∗q+tp > 0, we also have

∂

∂tp

∫ σ

0
2V ∗q+tpdr =

∫ σ

0
2
∂

∂tp
V ∗q+tpdq > 0. (6.77)

From (6.58), we see that tp decreases with Φ0, so
∫ σ
q=0 2V ∗q+tpdq decreases with Φ0. This

integral can change signs (from positive to negative) only once as Φ0 increases, and must
cross zero transversely. So by (6.74), Ψ′(Φ0) may change signs once (from negative to
positive) with the increase of Φ0, and must also cross zero transversely.

6.6.6. Step 6: Steps 3 and 4 for Φ0 ∈ [0, σ). The preceding two steps assumed that Φ0

was on the arc A = [σ, TI)∩ [P(σ)TI ,P(TI)TI). As previously explained, ∆ may also cross
TI on the arc A′ = [0, σ) ∩ [P(0) − TI ,P(σ) − TI). In this case, we can repeat the same
derivation substituting −Istep for Istep and TI − σ for σ in (6.73), and conclude that

sgn(Ψ′(Φ0)) = −sgn(−Istep)sgn
(∫ TI−σ

0
2V ∗q+tp(Φ0)dq

)
= sgn

(∫ TI−σ

0
2V ∗q+tp(Φ0)dq

)
(6.78)

where
∫ TI−σ

0 2Vq+tp(Φ0)dq decreases with Φ0. Therefore, on A′, Ψ′(Φ0) can change signs
only once (from positive to negative) as Φ0 increases, and must cross zero transversely.
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Figure 13: If Ψ(Φ0) crosses TI , it may do so only on A (on which it must be concave) and A′ (on
which it must be convex), and only in three ways. Left: If two crossings occur on A′, none can
occur on A. Center: If two crossings occur on A, none can occur on A′. Right: If one crossing
occurs on A, only one can occur on A′.

6.6.7. Step 7: Ψ may only cross TI twice. On A, Ψ may switch from decreasing to in-
creasing, and may therefore cross TI once downwards and then once upwards. In this case,
Ψ(Φ) > TI at both ends of A. Any other crossings must occur on A′; therefore, Ψ(Φ) > TI
at both ends of A′. For additional crossings to occur on A′, Ψ would have to decrease and
then increase on this interval; but we have shown that the sign of the derivative can switch
signs from positive to negative on this interval, so no additional crossings are possible.

If only one crossing occurs on A, then Ψ(Φ) > TI on one side of A′ and Ψ(Φ) < TI on the
other. Therefore an odd number of crossings must occur on A′; but for three crossings to
occur on A′, the sign of the derivative would have to switch twice, which is not permitted.
Therefore, in this case only one crossing may occur on A′.

A parallel argument to the first shows that if there are no crossings on A, a maximum of
two may occur on A′.

In all of these cases, when two crossings occur one is from above to below and the other
from below to above. An asymptotically stable 1:1 phase lock is only possible when the map
P− TI has a fixed point Φ at which −1 ≤ P′(Φ) ≤ 1. We recall that P(Φ) = Ψ(Φ) + Φ, so
at such a fixed point we must have −1 ≤ Ψ′(Φ)+1 ≤ 1, or −2 ≤ Ψ′(Φ) ≤ 0. In other words,
only when Ψ crosses TI downwards can the associated fixed point be asymptotically stable.
Therefore, only one asymptotically stable 1:1 phase locked trajectory may exist.

See Figure 13 for illustration.

6.6.8. Step 8: for c > 0. It is not immediately clear how to define Ψ for c > 0: at any
initial forcing phase Φ, the system may have a range of initial values of s, so the subsequent
interspike interval is not uniquely determined. However, if the return mapR from (s,Φ) just
after one spike to (s,Φ) at the next possesses an asymptotically stable invariant circle (see
previous appendix) and that circle is a graph of s over Φ, then after a sufficient transient,
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the initial value of s after a spike at any forcing phase Φ is uniquely determined by the
graph, and Ψ(Φ), the interspike interval following this initial condition, is uniquely defined.
For c = 0, the graph s = 1 serves this purpose: immediately after any spike, s = 1, so this
circle of initial conditions forms an attracting invariant circle for the return map.

The only part of the evolution of the system that depends on c is the resetting map,
which depends smoothly on c; therefore, by Fenichel’s theorem for maps [Fenichel], for a
sufficiently small c the invariant circle persists and depends smoothly on c. Therefore, for
sufficiently small c, the invariant circle is still a graph over Φ, and the interspike intervals
following the initial condition parametrized by Φ depend smoothly on c. Thus, Ψ(Φ)
depends smoothly on c. For c = 0, ∆ only crosses TI transversely, so for a sufficiently small
smooth perturbation no additional crossings can be created. Therefore, for sufficiently small
c > 0, ∆ can cross TI only twice, and only one crossing can correspond to an asymptotically
stable 1:1 phase lock; in other words, 1:1 phase locking is monostable.

6.6.9. Step 9: Proof of Lemma 6.6.1.

Lemma 6.6.1. If an ING oscillator receives a flat current I0 after a spike, its voltage
strictly increases.

Proof. In the V vs. t plane, the V-nullcline is the set V =

√
ge−

t
τs − b− I0. This nullcline

vanishes at a saddle-node bifurcation when b − ge−
t
τs + I0 < 0, which occurs when t >

τs ln
(
b+I0
g

)
. After a spike at t = 0, the voltage begins below the V -nullcline. The branch

of the nullcline accessible from below slants up and right, and on the nullcline all vectors
point horizontally to the right, so the nullcline cannot be crossed from below. Therefore V
remains below this nullcline, and V̇ > 0 until t > τs ln

(
b+I0
g

)
. And for all t > τs ln

(
b+I0
g

)
,

we also have V̇ = V 2 + b− ge−
t
τs + I0 > V 2 + 0 > 0. See Figure 14 for illustration. �

6.7. Existence of an Attracting Invariant Torus for PING. Here we show that for
sufficiently strong synapses to the I-population and an appropriate choice of parameters for
excitatory synapses, an attracting invariant torus exists in the PING phase space.

Theorem 6.7.1.

6.7.1. Proof Outline.

(1) First, we extend the ING system described in (1) to four dimensions by adding
the variable se, and rename the map from spike to spike R̊. We show that if an
attracting invariant torus exists for the return map for (1), then a corresponding
attracting invariant manifold exists for the map R̊.
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Figure 14: System is receiving flat current I0 after a spike at t = 0. In the V vs. t plane, the V
nullcline (red) cannot be crossed from underneath. All arrows to the right of the nullcline point
upwards, so V is always increasing.
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(2) We show that if the rise time TEI of the I-population and its derivative with respect
to initial conditions go to zero as C → ∞, then the map from the state at one
I-spike to the state at the next becomes C1 close to the map R̊ described above.
By Fenichel’s persistence result [Fenichel], this guarantees the existence of the
attracting invariant torus for sufficiently large C.

(3) We prove the lemma that TEI → 0 as C →∞.

(4) We use variational equations to prove the lemma that ‖∇TEI‖ → 0 as C → ∞,
using several supporting lemmas.

(5) We prove all supporting lemmas.

6.7.2. Step 1: From three to four dimensions. Here we prove that if we add the variable
se to the ING model, we may still ensure that an attracting invariant manifold exists by
picking g sufficiently large or picking ci and ce sufficiently small.

We extend (1) to a four-dimensional model by changing the names of θ and s to θe and si,
respectively, and adding an ODE for se:


τeθ̇

e = 1− cos(θ) + (1 + cos(θ))CG

ṡi = − si

τsi

ṡe = − se

τse

Φ̇ = 1

(6.79)

where
G = b− gsi + I(Φ).

We let si reset to ρi(si) = 1 + ci(s
i − 1) for some 0 < ci < 1 in the right-hand limit when

θe = π; we let se ∈ [0, 1] reset to ρe(se) = 1 + ce(1 − se) for some 0 < ce < 1 in the
right-hand limit when θe = π. Φ is again on the circle T1 = [0, TI). We assume that I(·) is
TI -periodic. This is slightly different than the PING model described by (4.1) in that θi is
left out and si resets at E-spikes instead of I-spikes.

We let R̊ denote the four-dimensional map from (θe0, s
i
0, s

e
0,Φ0) at the r.h.l. of a spike time

t = 0 to the state at the r.h.l. of the next spike time, ts, acting on the annulus K =
{(θe0, si0, se0,Φ)|θe0 ∈ U, si0 ∈ [1− ci, 1], se0 ∈ [1− ce, 1]} where U is some small neighborhood
of ±π on T1.

Remark 6.7.1. We note that the evolution of se under the map R̊ depends on the state of
the rest of the system, but the rest of the system is independent of se. This type of system,
with “independent” and “dependent” state variables, is called a“skew product” map. Jaroslav
Stark [Stark1997] and others have proven that if a skew product map produces a uniform
contraction in the direction of the dependent variables and the map is invertible on the
independent system, then it approaches an attracting invariant manifold that is a graph of



RESTRICTED PHASE-LOCKING DYNAMICS OF PERIODICALLY FORCED NETWORK GAMMA RHYTHMS57

the dependent variables over the independent variables. In our case, the map R̊ restricted to
the independent system is just R, which is indeed invertible as long as ci > 0. However, the
invariant manifold produced by contracting skew product systems is not necessarily robust
to the perturbation of introducing a weak dependence of the independent variables upon the
dependent variables, which is what we now must do. Therefore, we cannot directly make
use of the skew product structure of our system, and instead restrict our parameter space
such that we may again apply the Annulus Principle to prove the existence of an invariant
torus.

We again use subscripts 0 and ts to label the states of variables at the r.h.l. of the initial
and final spike times, and ts− to label the states of variables at the l.h.l. of ts. We follow
section 6.2, solving the variational equations and calculating the saltation matrices with
one extra variable, and then use (6.25) to write the expression

DR =DρMts−BM̃0

=


1 0 0 0
0 ci 0 0
0 0 ce 0
0 0 0 1




0 0 0 0
sits−τ

2τsi
1 0 0

sets−τ

2τse
0 1 0

− τ
2 0 0 1



κ − 2

τΣ 0 Ω

0 e
− ts
τ
si 0 0

0 0 e
− ts
τ
si 0

0 0 0 1




1 0 0 − 2
τ

0 1 0
si0
τsi

0 0 1
se0
τse

0 0 0 0



=


0 0 0 0

ci
sits−τ

2τsi
ci 0 0

ce
sets−τ

2τse
0 ce 0

− τ
2 0 0 1



κ − 2

τΣ 0 − 2
τ κ−

2
τΣ

si0
τsi

0 e
− ts
τ
si 0

si0
τsi
e
− ts
τ
si

0 0 e
− ts
τse

se0
τse
e
− ts
τse

0 0 0 0



=


0 0 0 0

ci
sits−τ

2τsi
κ −ci

sits−
τsi

Σ + cie
− ts
τ
si 0 ci

sits−
τsi

(−κ− Σ
si0
τsi

) + ci
si0
τsi
e
− ts
τ
si

ce
sets−τ

2τse
κ −ce

sets−
τse

Σ cee
− ts
τse ce

sets−
τse

(−κ− Σ
si0
τsi

) + ce
se0
τse
e
− ts
τse

− τ
2κ Σ 0 κ+ Σ

si0
τsi


Substituting sts− = s0e

− ts
τs ,

=


0 0 0 0

cie
− ts
τ
si

si0τ
2τsi

κ cie
− ts
τ
si (1− si0

τsi
Σ) 0 ci

si0
τsi
e
− ts
τ
si (1− κ− Σ

si0
τsi

)

cee
− ts
τse

se0τ
2τse

κ cee
− ts
τse (1− se0

τse
Σ) cee

− ts
τse ce

se0
τse
e
− ts
τse (1− κ− Σ

si0
τsi

)

− τ
2κ Σ 0 κ+ Σ

si0
τsi


(6.80)
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Remark 6.7.2. For clarity and simplicity, we do not change variables from Φ to φ in this
section. Thus, in the following we can only study the existence of invariant tori for PING
systems in parameter regimes for which the corresponding ING return map R possesses an
invariant circle that is a graph of s over Φ. Restricting ourselves to these regimes, we cannot
fully exploit the effects of rivering under inhibition. The analysis in this section could be
repeated with a similar result using an appropriate change of variables.

We let F denote the component of R̊ mapping (si0, s
e
0,Φ0) to Φts , and we let f denote the

component of R̊ mapping (si0, s
e
0,Φ0) to (sits , s

e
ts).



∂F̃
∂Φ = κ+ Σ

si0
τsi

‖
(
∂F̃
∂Φ

)−1
‖o = ‖ 1

κ+Σ
si0
τ
si

‖o

‖∂F̃∂s ‖
o = ‖

(
− τ

2κ Σ 0
)
‖o

‖ ∂f̃∂Φ

(
∂F̃
∂Φ

)−1
‖o = ‖


0

ci
si0
τsi
e
− ts
τ
si (1− κ− Σ

si0
τsi

)

ce
se0
τse
e
− ts
τse (1− κ− Σ

si0
τsi

)


κ+Σ

si0
τ
si

‖o = ‖



0

ci
si0
τsi
e
− ts
τ
si

 1

κ+Σ
si0
τ
si

− 1


ce

se0
τse
e
− ts
τse

 1

κ+Σ
si0
τ
si

− 1




‖o

‖∂f̃∂s ‖
o = ‖


0 0 0

cie
− ts
τ
si

si0τ
2τsi

κ cie
− ts
τ
si (1− si0

τsi
Σ) 0

cee
− ts
τse

se0τ
2τse

κ cee
− ts
τse (1− se0

τse
Σ) cee

− ts
τse

‖o
(6.81)

In Appendix 6.2, we determined that c could be chosen independently of all other terms
in DR̃, and g could be chosen large enough to make κ and e−

ts
τs arbitrarily small while

Σ remained bounded from below. (This result depended upon the θ trajectory being ini-
tialized at −π, but the same result can be derived for θ0 sufficiently close to −π, i.e.,
for U sufficiently small.) Using these results and a bound on the standard matrix norm
‖A‖2 <

√
‖A‖1‖A‖∞, where ‖A‖1 is the maximum absolute row sum of A and ‖A‖∞ is the

maximum absolute column sum, it is easy to check that by choosing g sufficiently large or
ci and ce sufficiently small, these partial derivatives may be made to satisfy the conditions
of the Annulus Principle.

6.7.3. Step 2: Persistence due to small TEI . We now turn to the full PINGmodel, (4.1):
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

τiθ̇
i = 1− cos(θi) + (1 + cos(θi))CGi

τeθ̇
e = 1− cos(θe) + (1 + cos(θe))Ge

ṡi = −si/τsi
ṡe = −se/τse
Φ̇ = 1

(6.82)

with Ge = be − giesi + I(Φ) and Gi = bi − giisi + geis
e. We assume that this model meets

all assumptions from section 4 for C = 1. As in the PING model (4.1): The inhibitory
synaptic activity variable si ∈ [0, 1] reset to ρi(si) = 1 + ci(s

i − 1) for some 0 ≤ ci < 1 in
the right-hand limit when θi = π; the excitatory synaptic activity variable se ∈ [0, 1] resets
to ρe(se) = 1 + ce(s

e − 1) for some 0 ≤ ce < 1 in the right-hand limit when θe = π. The
cell phase variables θe, θi ∈ [0, 2π) and the forcing phase Φ ∈ [0, TI) are on circles. I(·) is
a periodic input current to the with bound B > 0; gei, gie, and gii are gating variables;
τi and τe are the two membrane time constants; be and bi are the baseline levels of tonic
excitation to both populations; and τsi and τse are the decay time constants of inhibition
and excitation, respectively.

We let TEI denote the function that takes a state at initial time tE0 and returns the time
for θi to rise from its initial state at tE0 up to π. In the following, we frequently suppress
the dependence of TEI on state.

We prove in Lemma 6.7.1 below that as C →∞, TEI → 0 uniformly over initial conditions
at tE0. Here we demonstrate that as TEI and its derivative ∇TEI go to zero, the return
map for θi approaches the map R̊ defined above in C1 space.

In order to define the return map for the PING model (6.82), we first define the map from
the state at the r.h.l. of an I-spike at time tI0 (not including θi, which must be −π) to
the state at the r.h.l. of the next E-spike, at time tE0 (not including θe, which must be
−π):

RE : T1 × [0, 1]× [0, 1]× T1 →T1 × [0, 1]× [0, 1]× T1
θetI0
sitI0
setI0
ΦtI0

→

θitE0

sitE0

setE0

ΦtE0

 (6.83)

The model makes unique forward trajectories, and we have assumed that every trajectory
eventually leads to another E-spike, so this map is well-defined.
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Similarly, we define

RI : T1 × [0, 1]× [0, 1]× T1 →T1 × [0, 1]× [0, 1]× T1
θitE0

sitE0

setE0

ΦtE0

→

θetI2
sitI2
setI2
ΦtI2

 (6.84)

which takes the state at the right hand limit of an E-spike at time t (except θe) and returns
the state at the right hand limit of the next I-spike at time tI2 (except θi).

We define the map RIE as the composition of the two maps: RIE = RI ◦RE takes the
state at time 0 to the state at the r.h.l. of the I-spike that follows the next E-spike.

As TEI → 0, the distance traveled by θe from ±π between tE0 and tI2 (as a function of
state at tE0) is linearly approximated by θ̇etE0

TEI :

θetI2 − (±π) ≈θ̇etE0
TEI .

Similarly,

sitI2− − s
i
tE0
≈ṡitE0

TEI

setI2 − s
e
tE0
≈ṡetE0+

TEI

ΦtI2 − ΦtE0 ≈Φ̇tE0TEI

where + and − are added as subscripts to distinguish between values before (−) and after
(+) synaptic resetting. At the end of the EI interval, si resets in the right-hand limit,
contracting distances by ρ′i(s

i) = ci; therefore

sitI2+
− ρi(sitE0

) ≈ρi(sitI2−)− ρi(sitE0
)

≈ρ′i(sitE0
)(sitI2− − s

i
tE0

) = ciṡ
i
tE0
TEI .

All of these approximations are up to O(T 2
EI). Therefore,

RI


θitE0

sitE0

setE0+

ΦtE0

−

±π

ρi(s
i
tE0

)
setE0+

ΦtE0

 =


θ̇etE0

ciṡ
i
tE0

ṡetE0+

Φ̇tE0

TEI +O(T 2
EI) (6.85)

RE is exactly the same as the map R̊ from the previous step, except that RE returns the
quantity θi at the next E-spike instead of θe, and R̊ includes an si reset at the end while
RE does not:
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R̊


θetI0
sitI0+

setI0
ΦtI0

 =


±π

ρi
(
sitE0

)
setE0+

ΦtE0

 (6.86)

From (6.86),

RIE


θetI0
sitI0+

setI0
ΦtI0

− R̊


θetI0
sitI0+

setI0
ΦtI0

 =RI

RE


θetI0
sitI0+

setI0
ΦtI0


−


±π

ρi
(
sitE0

)
setE0+

ΦtE0



=RI


θitE0

sitE0

setE0+

ΦtE0

−

±π

ρi
(
sitE0

)
setE0+

ΦtE0


From (6.85),

=


θ̇etE0

ṡitE0+

ṡetE0+

Φ̇tE0

TEI +O(T 2
EI)

Making explicit the dependence of TEI on the state at time tE0:

=


θ̇etE0

ṡitE0+

ṡetE0+

Φ̇tE0

TEI ◦RE


θetI0
sitI0+

setI0
ΦtI0

+O(T 2
EI) (6.87)

C does not directly affect the magnitudes of θ̇e, ṡi, ṡe, or Φ̇, so they remain bounded as
C → ∞. We prove below in Lemma 6.7.1 that limC→∞ TEI = 0 (uniformly over initial
state at tE0); we conclude that RIE and R̊ approach each other in function space C0 on
the annulus K, and in particular, for sufficiently large C, RIE maps K into itself, fulfilling
the first condition of the Annulus Principle.

Differentiating both sides of (6.87) with respect to initial state,

DRIE −DR̊ =


θ̇etE0

ciṡ
i
tE0

ṡtE0+

Φ̇tE0

∇TEIDRE +O(TEI) ≤


θ̇etE0

ciṡ
i
tE0

ṡtE0+

Φ̇tE0

 ‖∇TEI‖‖DRE‖+O(TEI)
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We prove below in Lemma 6.7.2 that ‖RE‖ is bounded as C →∞; we prove below in lemma
6.7.3 that limC→∞‖∇TEI‖ = 0 (this result does not immediately follow from limC→∞ TEI =

0); we conclude that DRIE and DR̊ also approach each other on K. Thus, RIE and R̊
approach each other in function space C1 on K as C → ∞. In particular, the partial
derivatives of RIE still fulfill conditions 2, 3, and 4 of the annulus principle for sufficiently
large C.

We conclude that if we choose C sufficiently large, and either ce and ci sufficiently small
or gie sufficiently large, the return map RIE for the PING system possesses an attracting
invariant circle, and the full PING system therefore possesses a broken attracting invariant
torus and is limited to periodic and quasiperiodic dynamics.

6.7.4. Step 3: TEI gets small as C grows. In support of our previous conclusion we prove
the lemma:

Lemma 6.7.1. As C →∞, TEI → 0 uniformly over K.

Proof. Let TEI(C) denote the time between an E-population spike and the subsequent I-
population spike as a function of C. (TEI also depends on initial conditions, though we
suppress this dependence with this notation.) The period of a theta neuron with membrane
time constant τi and constant current I is τπ√

I
. By assumption 3 in Section 4, for C = 1,

the current to the I-cell is bounded away from zero until an I-spike: Gi > KEI > 0 for time
TEI(1). This bound holds over all initial conditions. For C > 1, Gi during this time is at
least CKEI , so TEI(C) < τiπ√

CKEI
. As C → ∞, this bound goes to zero, so TEI(C) → 0

uniformly over all initial conditions. �

6.7.5. Step 4: TEI does not vary sharply with initial state for large C. In support of our
previous conclusion we prove two lemmas. The first says that ‖DRE‖ is bounded as C →∞;
the second says that as C →∞, ‖∇TEI‖ → 0 as (where the gradient is taken with respect
to system state at tE0). In combination, these show that the variation in TEI in response
to variation in the initial state at tI0 goes to zero as C →∞.

Lemma 6.7.2. ‖DRE‖ is bounded as C →∞,

Proof. The only terms in DRE that depend on C are the derivatives of θitE0
with respect to

state at tI0. Variations in Φ and θe at tI0 may affect θitE0
only by making time tE0 earlier

or later; the amount by which such a variation affects tE0 is not affected by C, and the
resulting variation in θi is simply θ̇i times the variation in tE0, so we need only show that
θ̇i is bounded as C → ∞. Variations in si and se affect the evolution of θi directly; we
must show that their effect is bounded throughout the interval [tI0, tE0] as C →∞.

When C = 1, by assumption 1 from Section 4 Gi < KIE < 0 between an I-spike and
an E-spike. Therefore for C > 1, Gi < CKIE < 0 between I-spike and E-spike. During
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this interval, if θi > − cos−1
(

1+CKIE
1−CKIE

)
, then θ̇i < 0; therefore, θi cannot cross above

− cos−1
(

1+CKIE
1−CKIE

)
until the next E-spike, and until then

cos(θi) <
1 + CKIE

1− CKIE
. (6.88)

We also have |Gi| = |C(bi + geise − giisi)| ≤ C(−bi + gei + gii). These results allow us to
bound |θ̇i| during this interval:

τi|θ̇i| =|1− cos(θi) + (1 + cos(θi))Gi|
≤2 + |1 + cos(θi)||Gi|

≤2 + |1 +
1 + CKIE

1− CKIE
|C(−bi + gei + gii)

=2 + | 2

1− CKIE
|C(−bi + gei + gii)

≤2 +
2(−bi + gei + gii)|
| 1C −KIE |

which is bounded as C → ∞; therefore, the variations in θitE0
produced by variations in

θetI0 and ΦtI0 are bounded as C →∞.

Differentiating the first equation in (6.82) with respect to the system state, we have

d

dt
∆θit =

1

τi
(1−Git) sin(θit)∆θ

i
t +

C

τi
(1 + cos(θi))(gei∆s

e
t − gii∆sit)

with initial condition ∆θit = 0. This ODE is solved at tE0 by

∆θitE0
=
C

τi

∫ tE0

tI0

(1 + cos(θit))e
1
τi

∫ tE0
t (1−CGir) sin(θir)dr(−gii∆sit + gei∆s

e
t )dt

By the triangle inequality,

|∆θitE0
| ≤C

τi

∫ tE0

tI0

(1 + cos(θit))e
1
τi

∫ tE0
t (1−CGir) sin(θir)dr|−gii∆sit + gei∆s

e
t |dt

The term 1
τi

(1−Gi) sin(θi) is negative during this interval:

|∆θitE0
| ≤C

τi

∫ tE0

tI0

(1 + cos(θit))
(
gii|∆sit|+ gei|∆set |

)
dt
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∆sit and ∆set decrease exponentially, so during this interval they are less or equal to their
initial values at tI0:

|∆θitE0
| ≤C

τi

∫ tE0

tI0

(1 + cos(θit))
(
gii|∆sitI0+

|+ gei|∆setI0+
|
)

From (6.7.5),

≤C
τi

∫ tE0

tI0

(
1 +

1 + CKIE

1− CKIE

)(
gii|∆sitI0+

|+ gei|∆setI0+
|
)

=
C

τi

∫ tE0

tI0

(
2

1
C −KIE

)(
gii|∆sitI0+

|+ gei|∆setI0+
|
)

which is bounded as C → ∞. Therefore, the magnitude of the derivatives of θitE0
with

respect to sitI0+
and setI0+

are bounded as C →∞.

�

Lemma 6.7.3. As C → ∞, ‖∇TEI‖ → 0 (where the gradient is taken with respect to
system state at tE0).

Proof. We want to show that the derivative of TEI with respect to any initial state variable
at tE0 goes to zero uniformly over all initial conditions as τi → 0 or C → ∞. To do so,
we track variations from one spike to the next, as in Appendix 6.2. The amount of change
in TEI per unit variation in each initial condition gives us the gradient ∇TEI ; we want to
show that the magnitude of this gradient goes to zero as C →∞.

Between the E-spike and the following I-spike, variations in Φ make no difference to the
I-population rise time. The variation in θi at tE0 determines the change in the initial state
of θi at the beginning of its rise; the variations in si and se determine the change in the rise
speed. We will show that for any ∆θi, ∆si, and ∆se at time tE0, the resulting variation in
the rise time of the I-population goes to zero as C →∞.

The first variational equation of (6.82) is solved at time tI2 by

∆θitI2 =∆θitE0
e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
C

τi

∫ tI2

tE0

(1 + cos(θit))e
1
τi

∫ tI2
t (1−CGir) sin(θir)dr(−gii∆sit + gei∆s

e
t )dt

By the triangle inequality,

|∆θitI2 | ≤|∆θ
i
tE0
|e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
C

τi

∫ tI2

tE0

(1 + cos(θit))e
1
τi

∫ tI2
t (1−CGir) sin(θir)dr(gii|∆sit|+ gei|∆set |)dt

As noted above, |∆se| and |∆si| only decay after tE0, so

|∆θitI2 | ≤|∆θ
i
tE0
|e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
C

τi

∫ tI2

tE0

(1 + cos(θit))e
1
τi

∫ tI2
t (1−CGir) sin(θir)dr(gii|∆sitE0

|+ gei|∆setE0
|)dt
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Setting k = gii|∆sitE0
|+ gei|∆setE0

|,

|∆θitI2 | ≤|∆θ
i
tE0
|e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
kC

τi

∫ tI2

tE0

(1 + cos(θit))e
1
τi

∫ tI2
t (1−CGir) sin(θir)drdt

=|∆θitE0
|e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
k
√
C

τi

∫ tI2

tE0

(1 + cos(θit))
√
Ce

1
τi

∫ tI2
t (1−CGir) sin(θir)drdt

where we define
Γ(t) := (1 + cos(θit))

√
Ce

1
τi

∫ tI2
t (1−CGir) sin(θir)dr.

We have already determined that tI2 − tE0 <
τiπ√
CKEI

, so we have
√
C
τi

< π
(tI2−tE0)

√
KEI

, and
we can write

|∆θitI2 | <|∆θ
i
tE0
|e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
kπ√
KEI

1

tI2 − tE0

∫ tI2

tE0

Γ(t)dt.

The term 1
tI2−tE0

∫ tI2
tE0

Γ(t)dt is an average value of the function Γ over the interval [tE0, tI2],
and is therefore bounded by the supremum of Γ:

|∆θitI2 | < |∆θ
i
tE0
|e

1
τi

∫ tI2
tE0

(1−CGit) sin(θit)dt +
kπ

KEI
sup

t∈[tE0,tI2]
Γ(t).

Since θ̇i > 0 during this interval, we can invert θit and write time as a function of I-
population phase tΘ rather than the other way around: tΘ shall denote the time at which
θi reaches Θ. We change variables in all of our integrals and integrate over phase rather
than time using dt = dΘ

θ̇itΘ
:

|∆θitI2 | < |∆θ
i
tE0
|e

1
τi

∫ π
θitE0

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ +

kπ

KEI
sup

Θ∈[θitE0
,π]

Γ2(Θ) (6.89)

where Γ2 is Γ as a function of Θ rather than t, a function with the same supremum on
[θitE0

, π] as Γ has on [tE0, tI2]:

Γ2(Θ) := (1 + cos(Θ))
√
Ce

1
τi

∫ π
Θ (1−CGitθ ) sin(θ) dθ

θ̇itθ .

The term e

1
τi

∫ π
θitE0

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ in (6.89) can be broken into two parts:

e

1
τi

∫ π
θitE0

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ =

[
e

1
τi

∫ 0
θitE0

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ

][
e

1
τi

∫ π
0 (1−CGitΘ ) sin(Θ) dΘ

θ̇itΘ

]
.
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In Lemma 6.7.5(2), we prove that the first of these terms is bounded as C →∞; in Lemma
6.7.5(1), we prove that the second goes to zero as C →∞; in Lemma 6.7.6, we prove that
the term supΘ∈[θitE0

,π] Γ2(Θ) in (6.89) goes to zero as C →∞. Thus, the magnitude of the

variation ∆θitI2 caused by bounded variation in the initial state variables θitE0
, sitE0

, and
setE0

goes to zero as C →∞.

At time tI2, θi crosses π at speed 2
τi
, so a variation in θi translates into a variation in spike

time:

lim
C→∞

∆t = lim
C→∞

∆θitI2
2
τi

= 0.

So the impact of any variation in initial conditions at time tE0 is reduced to zero as C →∞;
in other words, limC→∞‖∇TEI‖ = 0.

�

6.7.6. Step 5: Auxiliary lemmas. Here we prove the lemmas that support the proof of our
previous lemmas. First we provide several definitions that will help us in the proofs of our
auxiliary lemmas:

Γ2(Θ) := (1 + cos(Θ))
√
Ce

1
τi

∫ π
Θ (1−CGitθ ) sin(θ) dθ

θ̇itθ . (6.90)

Given θit, the path of the I-population rise between tE0 and tI2,{
Gmin := inft∈[tE0,tI2]G

i
t > KEI > 0

Gmax := supt∈[tE0,tI2]G
i
tθ
> Gmin

W (C) :=
1− CGmin
1− CGmax

< 1

Lemma 6.7.4. Gmin and Gmax converge uniformly to GitE0
as C →∞.

Proof. During the I-cell rise, Git is changing at a bounded rate:

d

dt
Git =− gii

d

dt
si + gei

d

dt
se

=gii
si

τsi
− gei

se

τse

| d
dt
Git| ≤min

(
gei
τse

,
gii
τsi

)
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From the proof of Lemma 6.7.1, we know that the rise time of θi is bounded by τiπ√
CKEI

.
For t ∈ [tE0, tI2], Git must stay close to its initial value, GitE0

:

|Git −GitE0
| ≤min

(
gei
τse

,
gii
τsi

)
τiπ√
CKEI

, GitE0

so both Gmin and Gmax must approach GtE0 as C →∞. �

Lemma 6.7.5. Assume C is sufficiently large that 1 − CGmin < 0. Given some θi ∈
[θitE0

, π],

(1) If θi ∈ [0, π],

e

1
τi

∫ π
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ ≤

(
2

1− cos(θi) + (1 + cos(θi))CGmax

)W (C)

.

(2) If θi ∈ [−π, 0],

e

1
τi

∫ 0
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ ≤

(
2CGmin

1− cos(θi) + (1 + cos(θi))CGmin

) 1
W (C)

.

(3) limC →∞W (C) = 1.

Proof. (1) If θi ∈ [0, π], then sin(Θ) ≥ 0 for Θ ∈ [θi, π]. We can use this and the
definitions of Gmax and Gmin above, along with the assumption 1−CGmin < 0, to
place an upper bound on our expression of interest:

e

1
τi

∫ π
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ =e

1
τi

∫ π
θi

(1−CGitΘ ) sin(Θ)
dΘτi

1−cos(Θ)+(1+cos(Θ))CGitΘ

≤e
∫ π
θi

(1−CGmin) sin(Θ) dΘ
1−cos(Θ)+(1+cos(Θ))CGmax

=e
1−CGmin
CGmax−1

∫ π
θi

dΘ sin(Θ)(CGmax−1)
CGmax+1+(CGmax−1) cos(Θ)

=e
1−CGmin
CGmax−1

(− ln(CGmax+1+(CGmax−1) cos(Θ)))|π
Θ=θi

=e
1−CGmin
1−CGmax

ln
(

2

CGmax+1+(CGmax−1) cos(θi)

)

=

(
2

1− cos(θi) + (1 + cos(θi))CGmax

)W (C)

(2) If θi ∈ [−π, 0], then sin(Θ) ≤ 0 for Θ ∈ [θi, π]. We follow the same steps as above
but switch Gmin and Gmax to establish an upper bound on our new expression of
interest:
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e

1
τi

∫ 0
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ ≤e

∫ 0
θi

(1−CGmax) sin(Θ) dΘ
1−cos(Θ)+(1+cos(Θ))CGmin

=e
1−CGmax
CGmin−1

∫ 0
θi

dΘ sin(Θ)(CGmax−1)
CGmax+1+(CGmax−1) cos(Θ)

=e
1−CGmax
CGmin−1

(− ln(CGmin+1+(CGmin−1) cos(Θ)))|0
Θ=θi

=e
1−CGmax
1−CGmin

ln

(
2CGmin

CGmin+1+(CGmin−1) cos(θi)

)

=

(
2CGmin

1− cos(θi) + (1 + cos(θi))CGmin

) 1
W (C)

(3) By Lemma 6.7.4, Gmax and Gmin both approach GtE0 as C →∞:

lim
C→∞

W (C) = lim
C→∞

1− CGmin
1− CGmax

= lim
C→∞

1
C −Gmin
1
C −Gmax

= lim
C→∞

−GtE0

−GtE0

= 1

�

Lemma 6.7.6. Given an initial I-population phase θitE0
∈ [−π, 0],

lim
C→∞

sup
Θ∈[θitE0

,π]

Γ2(Θ) = 0

Proof. First, consider θi ∈ [0, π]. We show in Lemma 6.7.5(1) that

e

1
τi

∫ π
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ ≤

(
2

CGmax + 1 + (CGmax − 1) cos(θi)

)W (C)

where, by Lemma 6.7.5(??), limC→∞W (C) = 1.
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We can use this expression to bound Γ2(θi):

Γ2(θi) =(1 + cos(θi))
√
Ce

1
τi

∫ π
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ

≤(1 + cos(θi))
√
C

(
2

1− cos(θi) + (1 + cos(θi))CGmax

)W (C)

=(1 + cos(θi))1−W (C)C
1
2
−W (C)

(
2

Gmax

)W (C)( (1 + cos(θi))CGmax
1− cos(θi) + (1 + cos(θi))CGmax

)W (C)

(6.91)

=(1 + cos(θi))1−W (C)C
1
2
−W (C)

(
2

Gmax

)W (C)(
1− 1− cos(θi)

1− cos(θi) + (1 + cos(θi))CGmax

)W (C)

1−cos(θi)
1−cos(θi)+(1+cos(θi))CGmax

∈ [0, 1], so
(

1− 1−cos(θi)
1−cos(θi)+(1+cos(θi))CGmax

)W (C)
< 1:

Γ2(θi) ≤(1 + cos(θi))1−W (C)C
1
2
−W (C)

(
2

Gmax

)W (C)

(6.92)

By Lemma 6.7.5(refbothstep3),W (C)→ 1, so for sufficiently large C, 1
2−W (C) is bounded

below zero and C
1
2
−W (C) goes to zero as C grows.

We also haveW (C) < 1, so for sufficiently large C, 1−W (C) ∈ (0, 1] and (1+cos(θi))1−W (C) ∈
[0, 2].

Finally, by Lemma 6.7.4, limC→0Gmax = GtE0 , so
(

2
Gmax

)W (C)
→ 2

GtE0
.

The terms in (6.92) are all bounded uniformly over θi as C → 0, and one term goes to zero,
so Γ2(θi) goes uniformly to zero as C →∞.

Next, consider θi ∈ [−π, 0]. We split (6.90) into two pieces:

Γ2(θi) =(1 + cos(θi))
√
Ce

1
τi

∫ π
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ

=

[
(1 + cos(θi))

1 + cos(0)
e

1
τi

∫ 0
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ

][
(1 + cos(0))

√
Ce

1
τi

∫ π
0 (1−CGitΘ ) sin(Θ) dΘ

θ̇itΘ

]

=

[
(1 + cos(θi))

2
e

1
τi

∫ 0
θi

(1−CGitΘ ) sin(Θ) dΘ
θ̇itΘ

]
Γ2(0).

By Lemma 6.7.5(2), the first term of (??) is bounded uniformly over C and θi for sufficiently
large C. We have shown above that Γ2(0) → 0 uniformly as C → 0. Therefore, for
θi ∈ [−π, 0], Γ2(θi) goes uniformly to zero as C →∞. Our proof is complete.
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