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How Beat Perception Co-opts
Motor Neurophysiology
Highlights
Components of the brain’s motor
system are activated by the perception
of a musical beat, even in the absence
ofmovement, andmayplay an important
role in beat-based temporal prediction.

Two key brain regions involved in
movement, the supplementary motor
area (SMA) and dorsal striatum, have
neurocomputational properties that lend
themselves to beat perception.
Jonathan J. Cannon1,* and Aniruddh D. Patel2,3,*

Beat perception offers cognitive scientists an exciting opportunity to explore
how cognition and action are intertwined in the brain even in the absence of
movement. Many believe the motor system predicts the timing of beats, yet current
models of beat perception do not specify how this is neurally implemented. Drawing
on recent insights into the neurocomputational properties of the motor system,
we propose that beat anticipation relies on action-like processes consisting of
precisely patterned neural time-keeping activity in the supplementary motor area
(SMA), orchestrated and sequenced by activity in the dorsal striatum. In addition
to synthesizing recent advances in cognitive science and motor neuroscience,
our framework provides testable predictions to guide future work.
In SMA, neural firing rates represent the
phase of cyclic sensorimotor processes.

The involvement of SMA in perceptual
suppression of self-generated sounds
suggests that it could play a broader
role in informing auditory expectations.

The dorsal striatum plays a central role
in initiating and sequencing units of
movement, and may serve similar func-
tions in structuring beat-based temporal
anticipation.
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What Is the Motor System Doing during Beat Perception?
Human auditory perception extends beyond what is presented to our senses. When an auditory
rhythm has induced the sense of an isochronous (see Glossary) beat, a listener implicitly predicts
where each beat falls in time, even though some beats may not be marked by sound and some
sounds can occur at non-beat times (Figure 1A, and see the supplemental information online). In
humans, this beat maintenance is closely related to movement: a perceived beat often elicits
rhythmic motion [1–3], and rhythmic motion improves accuracy on beat-based perception tasks
[4,5]. Further, functional magnetic resonance imaging (fMRI) reveals that regions of the
motor system are active and interacting while a beat is perceived, even in the absence of
movement [6–8]. The most consistent of these are the supplementary motor area (SMA) of
the cortex, and the dorsal section of the striatum of the subcortical basal ganglia including the
putamen [6–12], which are parts of the brain’s ‘direct pathway’ for motor control (Figure 1B).

Although the motor system’s activation by covert beat maintenance could be a passive
byproduct of the frequent association of beat perception and movement, a number of authors
have argued that the motor system plays a causal role in covert beat perception [11,13–16].
Some have specifically suggested that beat-based temporal predictions arise from ‘simulated
rhythmic actions’ in the motor system [17–21]. For example, the action simulation for auditory
prediction (ASAP) hypothesis [19] posits that simulated actions in motor planning regions pro-
vide temporal predictions about beat times that influence activity in auditory regions. However,
this hypothesis currently lacks a neurophysiological account of the ‘simulated action’ and its
relationship to actual movement.

We argue that the idea of temporal computations via internal actions can be mapped onto a
specific proposal about the roles of the SMA and dorsal striatum in beat maintenance. We
focus on the roles of these structures because we find that an understanding of their motor
functions can be generalized to account for the maintenance of an internal pulse underlying a
rhythm. Crucially, this proposal draws heavily on known aspects of motor system physiology,
thus integrating cognitive science and motor neuroscience.
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Glossary
Action simulation for auditory
prediction (ASAP) hypothesis: posits
that the beat underlying a rhythmic
auditory stimulus is tracked and
anticipated by repeated movement-like
processes in the motor system that are
coordinated through rapid bidirectional
communication with auditory cortex.
Beat inference: recognizing that a
rhythm supports a beat and inferring its
tempo and phase.
Beat maintenance: implicit
anticipation of the timing of each beat
underlying a rhythmic auditory stimulus.
Dynamical systems: refers to systems
of variables whose direction of change is
determined by their present state, and to
the field of mathematics that studies
such systems.
Efference copy: a copy of a neural
signal that directs movement, sent to
sensory processing areas to anticipate
the sensory consequences of the
movement.
Functional magnetic resonance
imaging (fMRI): a technique for
measuring brain activity by detecting the
changes in blood oxygenation and flow
that occur in response to neural activity.
Isochronous: occurring periodically in
time with a constant interval between
events.
Proto-action: a term coined here to
describe a neural process that provides
the temporal structure of a movement
but is not specific to onemovement type
or body part.
Putamen: the subregion of striatum
most associated with motor function.
Striatum: the main input structure to
the basal ganglia.
Substantia nigra pars compacta: a
structure in the basal ganglia formed by
dopaminergic neurons. The loss of these
neurons is characteristic of Parkinson’s
disease.
Supplementary motor area (SMA):
the caudal subregion of the medial
premotor cortex. Also called ‘SMA
proper’ in some sources, to
disambiguate from neighboring
‘pre-SMA’. Contributes tomotor control,
planning, and coordination.
Tonic input: an input to a neural
process that does not change over time.
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Figure 1. Beat Perception and the Motor System. (A) A simple, repeating, non-isochronous rhythm is shown in music
notation and illustrated as an acoustic waveform. The rhythm induces an isochronous beat percept (beat locations shown by
triangle tips). Note that some beats are not marked by sounds (hollow triangles), and some sounds occur at non-beat times.
The reader is encouraged to listen to the corresponding sound example (see the supplemental information online), in which
the presented rhythm is looped several times, to verify the beat percept. (B) A simplified schematic of the direct pathway loop
connecting the two key areas discussed in this article in reference to beat perception. The supplementary motor area (SMA)
projects to the dorsal striatum (consisting of the putamen and caudate nucleus). Dorsal striatum inhibits the internal segment
of globus pallidus (shown here hidden behind the striatum), which inhibits thalamus. Closing the loop, thalamus excites SMA.
During physical movement, this pathway is thought to selectively disinhibit populations in SMA necessary for the
next submovement in a sequence. Here, we propose that the same process is used to disinhibit populations that
generate the temporal dynamics necessary to covertly anticipate the next beat in a rhythm. Adapted from [117]; CC BY 3.0
https://creativecommons.org/licenses/by/3.0/.

Trends in Cognitive Sciences

Click to play
sound example
The ASAP Hypothesis and Action Simulation
Beat perception involves spontaneously recognizing that a rhythm supports a beat and inferring
its tempo and phase (beat inference), and a subsequent process of beat maintenance (see
[22,23] for neural research dissociating these processes). The ASAP hypothesis establishes a
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general framework for understanding beat maintenance in the brain. It posits that auditory cortex
sends auditory timing information to motor planning areas, which initiate simulated actions timed
to terminate on the next beat. These motor signals travel to auditory cortex via temporally-precise
re-entrant signaling [24], where they predict beat timing and shape the perceptual interpretation
of rhythms. ASAP argues that this co-opting of motor planning activity for auditory prediction is
effective because the motor system is an excellent generator of temporal patterns on the time
scale of musical beats. Our strongest sense of beat occurs when inter-beat intervals are between
~400–1200 ms, and humans show a preference for beat periods around 600 ms [25], near a
natural frequency of human locomotion [26].

ASAP proposes that communication between motor and auditory areas in beat perception
relies on a dorsal auditory pathway that bidirectionally links the premotor, parietal, and temporal
cortices [27] (see [28] for a test of this proposal). It further proposes that the temporo-parietal
part of this pathway was strengthened in humans (relative to other primates) over evolutionary
time as the human lineage became vocal learners [29,30]. The strength of this pathway in humans
could help explain why auditory rhythms so readily engage the motor system in our species. The
pathway’s relative weakness in monkeys [31,32] could account for why they (unlike humans) do
not spontaneously move predictively when synchronizing movements to periodic rhythms, yet
do single-interval timing in a way that is behaviorally and neurally similar to humans [33,34].

However, an essential aspect of ASAP remains conceptually underdeveloped: the simulated
action. Up to now, ASAP has remained agnostic as to how a simulated action is neurally instantiated
in the motor system. Here we propose that the simulated actions posited by ASAP consist of
precisely patterned neural time-keeping activity in SMA, orchestrated and sequenced by activity in
the dorsal striatum. Activity in SMA is tuned to play out over the course of one beat period, informing
auditory anticipation over the course of each inter-beat interval and adjusting its state to continuing
auditory cues. Dorsal striatum uses contextual input from motor and sensory cortices to select and
disinhibit consecutive units of SMA activity (which we call proto-actions). In the following sections
we build up these hypotheses in detail and review the evidence supporting them.

SMA in Beat Maintenance
In humans, the SMA is activated by a range of beat-based tasks, including self-paced finger
tapping, tapping entrained to music, and (importantly for this discussion) tasks involving the
covert tracking of a beat [6–8,35]. Differences in SMA activation account for individual differences
in performance on covert beat-based timing tasks [36,37], suggesting that SMA plays a func-
tional role in covert beat generation. A covert repetitive timing task in monkeys has demonstrated
that neural activity in SMA can maintain an ongoing ‘metronome’, tracking task-relevant periodic
time intervals in the absence of sensory cues [38].

‘Proto-Action’ for Timing and Prediction
As we formulate hypotheses of the roles played by SMA in beat-based predictive timing, the
ASAP hypothesis suggests that we look to its role in movement. To appreciate this role, it is
important to consider motor control through the increasingly influential dynamical systems lens
[39,40]. While the classical ‘tuning/decoding’ perspective asks how activity of specific neurons
may represent different aspects of movement (such as direction, velocity, etc.), the dynamical
systems perspective asks how interactions between neurons can give rise to a reliable, flexible
time series of motor commands. For example, monkey electrophysiology and computational
modeling have shown that arm reaching is orchestrated by temporal fluctuations in firing rates of
neurons in motor cortex, and that during a reach these fluctuations are likely attributable largely
to interactions between motor cortical neurons via recurrent connections [40]. These fluctuations
Trends in Cognitive Sciences, February 2021, Vol. 25, No. 2 139
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can be viewed as tracing out reliable paths (trajectories) in an underlying space of possible firing
rates, with each position in this space corresponding to a set of signals being relayed to the
muscles (Figure 2).
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Figure 2. Illustration of Time-Keeping by a Neural Firing Rate Trajectory. In monkey supplementary motor area (SMA),
reliably patterned fluctuations in the collective firing rates of neural populations keep time during deliberately timed behaviors like
rhythmic tapping. These fluctuations can be visualized as tracing out paths (trajectories) in a high-dimensional space of firing
rates, with the shape and time course of the path dependent on the time course of the behavior. (A) Fluctuations in the firing
rates of three neurons graphed over time during a timed behavior. (B) The same fluctuations visualized as a trajectory in 3D
space, where each axis represents the firing rate of one neuron and each point on the trajectory represents the three firing
rates at one point in time. Three example time points are marked. (C) Trajectories traced by firing rates in large neural
populations (i.e., hundreds, rather than just three) are easier to visually understand in ‘principal component’ space [118],
where each axis is a ‘component’ corresponding to the correlated activation of many neurons, and where components
accounting for the most combined variance in population firing rates are displayed. Empirical research on periodic tapping in
monkeys shows that the firing-rate fluctuations in SMA between consecutive taps trace out circular trajectories in principal com-
ponent space. For shorter inter-tap intervals, firing rates fluctuate faster but with lower amplitudes, creating smaller loops that
repeat within a shorter period [46]. Adapted from the results of [46] and simplified for illustration.
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Research shows that during movement execution in non-human primates, dynamics in SMA
resemble those in motor cortex: neural firing rates during a specific movement pattern follow
reliable, repeatable trajectories. But recent results indicate that firing rates in SMA give a more
abstract representation of progress through a given action, continuing to change over time through
periods of motionlessness (e.g., between consecutive finger taps [41]) and occupying distinct
states on consecutive repetitions of the same movement [42–44]. Importantly, when motionless
behavioral intervals are deliberately lengthened or shortened to meet task demands, some
combination of the speed and amplitude of these trajectories and the number of neurons involved
adjusts accordingly, tuning the system to arrive at a similar end state associated with a behavioral
response (e.g., a tap) in a different amount of time [41,45,46] (Figure 2C). This behavior differenti-
ates the population activity from a strictly ‘absolute’ timekeeper, which would progress similarly
regardless of the target interval (and which is well-suited to single-interval timing). Instead, its
state offers ‘relative’ timing information about the elapsed time relative to the target interval.

Following ASAP’s analogy of covert inter-beat interval timing to action, we hypothesize that in
humans, SMA behaves in covert beat-based timing like it behaves during overt cyclic movement
in monkeys (such as repetitive reaching or tapping), but without the accompanying motor cortex
activation directing physical action. In other words, we propose that SMA tracks progress
through each beat interval by generating firing rate dynamics that are tuned to arrive at a charac-
teristic state at the next beat time, whether or not there is a behavioral response attached to that
beat. As noted previously, strong auditory-motor connections in humans permit this motor timing
information to reach auditory cortex in a temporally precise fashion, enabling beat-based auditory
prediction in humans to a degree unmatched by non-human primates.

How is SMA tuned to create dynamics that anticipate the appropriate interval? Analysis of brain
activity in regions upstream and downstream from SMA in monkeys (and supporting models)
indicate that interval-specific adjustments to SMA trajectories seem to be made through modu-
lation of tonic inputs to and/or initial state of an SMA network, with the resulting dynamics
generated through local interactions within SMA [45,47,48]. [As noted previously, the question
of how the beat interval is initially inferred such that it can be used to inform SMA falls outside
the scope of this paper (see Outstanding Questions.)]

The beat-anticipatory trajectory in the SMA plays the role of the timing component of the
‘simulated action’ posited by the ASAP hypothesis. Note, however, that it need not correspond
to a specific action. We will refer to a beat-anticipatory trajectory in SMA as a ‘proto-action’
because this type of brain activity appears to underlie and temporally structure action without
specifying a particular physical movement.

Anticipating Sound and Correcting Timing
The proposal that neural trajectories in the SMA keep time between beats is enriched by
incorporating another line of SMA research that attributes it a role in predicting and canceling
the sensory consequences of one’s own actions, particularly in the auditory domain [49–51].
This allows an animal to focus on unexpected (i.e., informative), acoustic events. In the language
of motor control, SMA is thought to provide an ‘efference copy’ of motor commands that can
be used by a ‘forward output model’ [52] to predict the sensory feedback that will be produced
by those commands. The function of a forward output model has traditionally been ascribed to
cerebellum [53–55], which is involved in beat perception [7,56]. However, collected evidence,
especially from speech research, suggests that SMA may be driving auditory predictions via
the dorsal auditory pathway using more flexible forward models in premotor and parietal cortex
[19,27,57,58].
Trends in Cognitive Sciences, February 2021, Vol. 25, No. 2 141
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Given this role of SMA, the cyclic dynamic state of SMA during rhythmic movement can be under-
stood as providing an efference copy of cyclic motor commands to a forward predictive model.
Importantly, it has been proposed that forward models can also be used for prediction in the
absence of movement-generating motor commands [14,59]. In this case, the dynamic state of
SMAmight better be interpreted as providing a sound-predictive model with an estimate of prog-
ress through the time course of a temporally structured stimulus. (The ‘active inference’ frame-
work brings these two ideas together by proposing that movement itself is actuated not
through ‘commands’ but through processes that represent the anticipated sensory feedback
from movement [61,62]).

Thus, we can flesh out our hypothesis by positing that as SMA tracks progress through each beat
interval, it informs a selected auditory forward model that dynamically anticipates auditory input
over the course of the interval. The predictions of the forward model could be used to attenuate
the perception of uninformative sounds or to increase gain on informative sounds as needed
[60,63]. In addition to anticipating a sound that often (but not always) marks the position of the
beat, a forward auditory model might also learn to predict intervening sounds between beats
(e.g., subdivisions of the beat).

The combination of a proto-action timing process in SMA and a forward model predicting
auditory input at specific points in time constitutes a ‘simulated action for auditory prediction’
as proposed by ASAP. We propose that the cyclic dynamics in SMA that inform premotor for-
ward models are the source of the delta-frequency oscillations originating in the motor system
that have been proposed to scaffold temporal prediction and active audition [5,21,60,64,65],
though we apply the word ‘oscillation’ cautiously, as later discussed.

A forwardmodel of expected sound also provides a mechanism for aligning trajectories in SMA to
the cycle of sound. During covert beat maintenance, the timing of real sounds and sounds
predicted by a forward model could be directly compared, and timing errors could be used to
adjust SMA’s representation of progress through the cycle. A similar process could help SMA
track the progress of an actual movement based on auditory feedback. Such processes of
comparison and adjustment are at the heart of the predictive processing/active inferencemodeling
framework and are discussed later.

Dorsal Striatum in Beat Maintenance
Like SMA, dorsal striatum (especially the putamen) is consistently activated by tasks requiring
covert maintenance of a beat [8,35,66]. Dorsal striatum seems especially important to top-down
(rather than stimulus-driven) aspects of beat perception: it is activated more by beat maintenance
than by beat inference [22], and striatal dysfunction specifically impairs tracking of rhythms
requiring internal maintenance of a beat [56,67,68].

Initiating and Sequencing Simulated Actions
Motivated by the ASAP hypothesis, we look to the role of dorsal striatum in movement to unravel
its role in beat-based timing. In the canonical model of the basal ganglia’s role in motor control
[69,70], the dorsal striatum serves as the first link in the motor ‘direct pathway’ (Figure 1B). In
the leadup to action initiation, motor areas and other cortical and thalamic areas representing
sensory and cognitive context send inputs to dorsal striatum, activating populations representing
possible actions. These populations compete with each other throughmutual inhibition, such that
only one self-consistent action plan ultimately survives. It is not yet clear how the right time for
action initiation is selected, but it is widely hypothesized that a short pulse of dopamine, delivered
to striatum from dopaminergic neurons in substantia nigra pars compacta, provides the
142 Trends in Cognitive Sciences, February 2021, Vol. 25, No. 2
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impetus to initiate action [71,72]. This pulse is thought to cause a burst of activity in dorsal
striatum that propagates through the direct pathway [from striatum to globus pallidus (GPi) to
thalamus to cortex] (Figure 1B), leading to the disinhibition of populations corresponding to the
selected action in motor and supplementary motor areas [69].

Motor neuroscience draws a distinction between ‘externally triggered’ actions, where action
timing is determined by a sensory cue, and ‘self-initiated’/‘internally cued’ actions, where action
timing is determined by an internal process. Numerous studies indicate that SMA is essential
for establishing the timing of self-initiated actions, and that the interaction of SMA and dorsal
striatum plays a key role in self-initiated (but not externally-triggered) movements [73–79]. It
seems that when there is no external cue, the input from SMA to dorsal striatum is essential for
activating the direct pathway and initiating action.

Building on these findings, we hypothesize that in covert beat maintenance the direct pathway is
using input from SMA to striatum as an internal cue to initialize the next proto-action in SMA, just
as it draws on SMA input as a cue to initialize self-generated action during actual movement. This
is accomplished by disinhibiting the appropriate subpopulation in SMA to generate the neural
dynamics that will unfold over the course of the next beat cycle. (See [80], which similarly
proposes that the basal ganglia disinhibits selected ‘emulations’ of action for prediction.) The
role of striatum in detecting and responding to the state of a cortical timer hearkens back to
the influential ‘striatal beat frequency’ model, which proposed that striatum detects a specific
state of an ensemble of cortical oscillators as a cue that a specific duration has elapsed [81]. How-
ever, our proposal differs in two respects: first, that the cortical input is already tuned to represent
a specific time course, and second, that the striatum serves not just to detect a cortical state but
to initiate a new process in response.

The importance of striatal dopamine in initiating self-generated actions suggests that dopamine
may also play an important role in sustaining an internal representation of a beat (Box 1). Further,
the position of the striatum at an interface of anticipatory timing andmovement suggests possible
neural substrates for the link between beat-based timing and movement (Box 2).
Box 1. Dopamine and Beat Percept Strength

The neurotransmitter dopamine is widely associated with reward anticipation andmotivation. However, these associations
are most appropriate to dopamine in the cortex and ventral striatum, which is provided by dopaminergic neurons in the
midbrain’s ventral tegmental area. By contrast, dopamine in dorsal striatum, delivered by dopaminergic cells in the nearby
substantia nigra pars compacta (nigrostriatal dopamine), is more closely associated with (and capable of triggering) the
initiation of action [119]. It is possible that nigrostriatal dopamine is similarly involved in initiating the time-keeping proto-ac-
tions in SMA that we have discussed earlier.

A current line of research suggests that dopamine (and nigrostriatal dopamine in particular) may encode certainty in
cognitive constructs. Friston et al. [120] argue that ‘dopamine reports the precision or salience of sensorimotor constructs
(representations) encoded by the activity of the synapses they modulate,’ and therefore that ‘changing the levels of
dopamine changes the level of uncertainty about different representations’. One such ‘sensorimotor construct’ could be
an internal representation of the period and phase of a temporal cycle underlying an ongoing sound. In this case, dopamine
would also serve as an index of confidence in temporal predictions based on that cycle. Recent experimental evidence has
offered support for this interpretation [121–123]. Striatal dopamine level in particular has been found to index temporal ex-
pectation of perceptual cues [124] and certainty about timing [125].

Combining these ideas with our current framework, we hypothesize that when SMA accurately anticipates rhythmic
timing, striatal dopamine levels rise, making it easier for the striatum to initiate the proto-actions that serve as an internal
representation of the beat cycle and strengthening the internally generated component of the beat percept.

Trends in Cognitive Sciences, February 2021, Vol. 25, No. 2 143



Box 2. Insight into Dance and Parkinson’s

The basal ganglia may be the key point of intersection for musical anticipation and movement, given their role in selecting,
sequencing, and disinhibitingmovement and (as proposed here) in doing the same for time-keeping proto-actions. Several
processes in the basal ganglia have global motor-modulatory effects that are not limited to specific movements, and that
therefore may be responsible for our inclination to move (and our facility at moving any body part) along with rhythmic mu-
sic. The pulses of striatal dopamine from the substantia nigra that are thought to time the output from dorsal striatum could
have the effect of encouraging initiation of motor activity at the same moments as the next proto-action is initiated in SMA.
Action initiation also appears to require overcoming the anti-kinetic effect of the ‘hyperdirect’ pathway through basal gan-
glia [126,127]. If the hyperdirect pathway’s influence is attenuated to allow for striatal output initiating the next forward
model, this may have the additional effect of broadly facilitating the initiation of movement.

Both of these mechanisms (dopaminergic and hyperdirect), are plausible links to the remarkable gait-facilitating effects of
rhythmic cueing in Parkinson’s [128]. An extra dopamine pulse could help overcome the dopamine deficiency thought to
make action initiation so difficult in Parkinson’s; alternatively (or additionally), a drop in hyperdirect pathway influence could
make it easier for weak dopaminergic signals to successfully initiate action. Both mechanisms also offer a possible
mechanism for the modulation of beta (~20Hz) oscillation power that has been repeatedly observed to synchronize with
a beat [17,129,130]: the anti-kinetic effect of the hyperdirect pathway is linked to beta [131,132], and phasic striatal dopa-
mine is thought to attenuate beta [133].

Trends in Cognitive Sciences
From Action Sequencing to Metrical Anticipation
To anticipate auditory input in a uniformly repeating cycle (Figure 1A), the basal ganglia could
select the same pattern of activity in SMA over and over again. Yet why should such a complex
brain structure be necessary to play this role; surely the flexible dynamics of SMA could sustain
a repeating cycle on its own? Crucially, cyclic movement andmusical rhythm both have repeating
temporal structure at multiple time scales. In cyclic movement, multiple actions are sequenced
into longer cycles such as the left-right cycle of stepping, and in music, metrical structure contains
repeating temporal patterns at multiple scales such as beats, groups of beats, etc. For a brain
structure like SMA that seems to specialize in generating dynamics over subsecond time scales,
flexibly structuring ‘chunks’ of dynamic activity into longer repeating patterns may not be trivial.

Thus, the motor function of dorsal striatum most relevant to our sense of the beat may be its role
in sequencing movements. Striatal activity is important for making transitions between sequential
motor ‘chunks’ in learned motor sequences, both in rodents [82–84] and humans [85]. During
rhythmic action, striatal activity (in monkeys) differs predictably from one action repetition to the
next [86], suggesting that repetitions of superficially similar movements are being represented
as a sequence of distinct actions in striatum. Sequential activity in striatum during covert timing
tasks (in rats) suggests that even undifferentiated wait time is represented as a sequence of
distinct states [87]. Models suggest that sequential transitions in striatum may be orchestrated
by patterns of inhibitory connectivity among striatal neurons trained by sequential motor cortical
input [88], or else by a ‘competitive queuing’ process among cortical representations [89,90]
(a mechanism recently used to model rhythmic sequencing [91]).

Following this thread of evidence, we hypothesize that striatum sequences the short proto-actions
of SMA into longer repeating patterns. For example, each beat in a group of four (a common
repeating unit in Western music) would have its own characteristic identity in SMA as a proto-
action with identical duration but different signatures in neural dynamics. As one reached its end,
the dorsal striatum would initiate the next in the sequence (Figure 3). Thus, activity in both SMA
and striatum should show patterns that repeat with the metrical cycle as well as with the beat;
this is consistent with a recent study combining electroencephalography (EEG) and fMRI [92]. Re-
cent observations in rodents suggest that striatum orchestrates hierarchically, as well as sequen-
tially, structured movement [93], and thus might support hierarchical metrical structures [94].
144 Trends in Cognitive Sciences, February 2021, Vol. 25, No. 2
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An advantage of a framework that separates timing and sequencing activities into separate brain
regions is that it allows for metrical structures that include non-isochronous durations as ‘beats’
[95], as in various traditional music, such as Balkan and Scandinavian music, where such musical
structures inspire tightly coordinated rhythmicmovement in enculturated performers and dancers
[96–98]. For example, each grouping in a ‘2/2/3’ Balkan pattern, in which every third inter-beat
interval is 1.5 the duration of the previous two intervals, would be represented by its own distinct
proto-action in SMA and sequenced by dorsal striatum, with the third proto-action being longer in
duration than the other two.

Implications for Beat Perception Modeling
The covert beat-maintenance process we hypothesize based on the neurophysiology of motor
processing can be loosely summed up as follows. An adjustable-speed neural process (proto-
action) in SMA aligns to perceptual intervals, informing auditory anticipation over the course of
the interval and correcting its alignment based on continuing auditory cues. On each beat
cycle, output from SMA signals dorsal striatum to select and disinhibit a new cycle-specific
neural subpopulation in SMA to generate the next proto-action. In combination, when the
proto-actions sequenced by striatum and executed by SMA are of a consistent duration, this
creates a self-sustaining cycle of internal activity that creates a beat-based pattern of auditory
anticipation.

This system can be understood as a neurophysiological implementation of the ‘attending
rhythms’ of dynamic attending theory [99,100] that are posited to direct attention over time.
However, our neurophysiological hypotheses are only partially consistent with the oscillator-
based models applied by dynamic attending theory to beat perception [101–103]. Since our
proposed brain dynamics do not account for beat inference, they may be consistent with a
model in which beat inference relies on a bank of oscillators [101]. However, describing cyclical
activity in SMA as a limit cycle oscillation during beat maintenance suggests that the process is
an autonomous, homogeneous cycle like a pendulum, whereas we hypothesize that active
input from the striatum shapes this activity cycle by cycle. Notably, our account allows for a
simpler model of the generation of non-isochronous beat patterns than is possible with homog-
enous oscillators. We also believe our account generalizes more easily than an oscillator account
to non-isochronous rhythmic anticipation in speech [104–106]. The sequential nature of our
neurophysiological account of the beat would be better described by the model of concatenated
diffusion processes proposed and evidenced by Merchant and Averbeck [107].

The idea of SMA dynamics aligning to the beat based on a forward model of expected sound is
closely related to the ‘predictive processing’/‘active inference’ school of brain modeling. According
to this perspective (recently invoked in describing and modeling musical rhythm [108–110]), the
brain is constantly predicting its inputs and adjusting its representations of states in the world
based on its errors in prediction. In our picture of SMA, a dynamic neural state represents either
Figure 3. Basal Ganglia Sequences the Beat-Tracking Trajectories in SupplementaryMotor Area (SMA). (A) Once
a beat has been inferred in an auditory rhythm, neural firing rates in SMA follow a trajectorywhich tracks progress through a bea
cycle, informing the anticipation of the beat and possibly other sounds locked to the cycle (such as a subdivision of the beat
indicated by the ‘&’ symbol on the trajectory). The activity of neurons generating this trajectory is initiated and reinforced by
selective disinhibition by the basal ganglia: a population specific to the first beat cycle is active in dorsal striatum (blue). Acting
through the internal segment of the globus pallidus (GPi), this population disinhibits a thalamic population, which provides
SMA with excitation specific to that trajectory. (B) As the first beat cycle ends and the second beat arrives, some
combination of SMA’s evolving input to dorsal striatum and inhibitory interactions within dorsal striatum activates a new
striatal subpopulation (red). This population disinhibits a new subpopulation in SMA that allows SMA activity to continue to
evolve along a new trajectory similar to the previous one. It spans the same time interval, but plays a different role in the
metrical structure, and may inform different auditory expectations specific to that beat cycle.
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Outstanding Questions
How do the proposed mechanisms
of beat maintenance interact with
the larger network of brain regions
engaged by beat-based stimuli? The
cerebellum is known to be active in
beat-based timing tasks. It plays a
role in rapidly relaying temporally pre-
cise information to frontal areas, and
thus could be an important input
to the beat maintenance circuit. It
also contributes to error-correction
in motor control and could similarly
serve to update beat phase and
tempo in response to errors in antici-
pation. Further, we have only touched
briefly on the bidirectional interaction
between the beat maintenance sys-
tem, premotor areas, and the auditory
cortex. This interaction is central to
beat perception and should be more
fully characterized.

How does the brain perform beat
inference? Before the beat maintenance
system can be engaged, the presence
of a beat must first be recognized, a
process that is likely inseparable from
initial inference of its tempo and phase.
Beat inference has been modeled as
the emergence of resonance in a bank
of oscillators. It could also involve a
process of characterizing temporal
structures and detecting their repetition,
possibly utilizing coincidence detection
between internal timing signals and
auditory events in cerebellum and/or
basal ganglia. To transition from beat
inference to beat maintenance, a tempo
must be persistently represented in
the brain, as evidenced by our capacity
to continue a beat after the end of
a rhythm. One logical place to seek
this representation would be the
dorsolateral prefrontal cortex, a region
that supports persistent representations
and is specifically activated by tempo-
based tasks.

How does the development of beat

Trends in Cognitive Sciences
physical progress through a cyclic action, or progress through an externally-generated cycle of
auditory events. In either case, predictions of auditory input based on this dynamic state are
compared with actual auditory input, and errors are used to correct the state. We are developing
a computational model that expresses this process in terms of Bayesian inference, compatible
with predictive processing [111]. This will help connect our neurophysiological picture to Bayesian
models of timing (reviewed in [112]; see also [113], which connects Bayesian timing inference with
SMA dynamics).

Concluding Remarks
Beat perception offers cognitive science an exciting opportunity to explore how cognition and
action are intertwined in the brain even in the absence of movement. Based on the idea that
simulated actions support the precise temporal predictions involved in covert beat maintenance,
we have drawn on the motor neuroscience literature to propose specific roles for SMA and the
dorsal striatum, two key motor structures engaged by beat perception. This leads to testable
predictions, and illustrates how cognitive science, by engaging with the details of motor
neuroscience, can move toward biologically-detailed models of embodied cognition.

Our hypotheses lead to several testable predictions in humans. First, if dorsal striatum is engaged
in sequencing beats into higher-order metrical structures, then these slower metrical periodicities
should be reflected in striatal activation, which, unlike the beat cycle itself, may be slow enough to
directly observe in fMRI [114]. Second, the hypothesis that each beat cycle represents a distinct
simulated action suggests that characteristic beat-related activity in scalp EEG recordings should
align to and anticipate non-isochronous beats in enculturated listeners (e.g., in Balkan music
[96,97]). Third, recordings in human basal ganglia (e.g., during deep brain stimulator
implantation) should show activity at a characteristic phase of the beat cycle, regardless of the
specific auditory events implying the presence of a beat. Fourth, this activity should include striatal
dopamine pulses that may be observable using fast-scan cyclic voltammetry [115], which should
also detect elevated tonic striatal dopamine in conditions of a strong internal beat (Box 1). Finally,
electrocorticography (ECoG) recordings in human SMA should show firing rate trajectories
aligning to the beat cycle during complex rhythms, accounting for variation in performance on
beat-based timing tasks, and perturbations of these trajectories [116] should disrupt beat
maintenance.
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